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Abstract
We investigate the existence and propagation properties of linearly chirped self-similar 
solitons in an inhomogeneous tapered centrosymmetric nonlinear waveguide doped with 
resonant impurities under diffraction and nonlinearity management. The exact self-similar 
bright and dark soliton solutions are presented by employing an improved homogeneous 
balance principle and an F-expansion method. It is found that these chirped self-similar 
beams possess a strictly linear chirp that leads to efficient compression or amplification. The 
dynamical behaviors of these self-similar structures in a periodic distributed amplification 
waveguide system and an exponential diffraction decreasing waveguide are respectively 
studied for different choices of tapered index profile. The results show that the soliton shape 
and propagation behavior can be effectively controlled by selecting the diffraction, quintic 
nonlinearity, tapering, and gain or loss.
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1.  Introduction

Tapered graded-index waveguides are potentially useful in 
optical communications [1]. In these systems, tapering is a 
significant effect that plays a sensitive role on the light beams 
propagation [2–15]. For instance, it helps in maximizing light 
coupled into optical fibers, and integrated-optic devices and 
waveguides by reducing the reflection losses and mode mis-
match effect [16, 17]. Apart from all its important applica-
tions, the tapered graded-index waveguide is an interesting 
object for studies, as it is a nonlinear system that can have 
a very rich dynamics. Remarkably, investigations of opti-
cal wave propagation inside in this important element have 
attracted more interest in recent years and several interesting 
results have been obtained [18–21].

The equation that governs the field dynamics in a tapered 
Kerr graded-index waveguide amplifier is a nonlinear 
Schrödinger-like equation  that includes tareping and gain 
terms. Such model supports self-similar wave solutions of dif-
ferent types such as bright similaritons, Akhmediev breathers 
and rogue waves [16–23]. These self-similar structures are of 
primary importance because of their great value in understand-
ing widely different physical phenomena [24]. Interestingly, 
self-similar waves (optical similaritons) may be useful in vari-
ous real applications in fiber-optic telecommunications and 
photonics, since they can maintain their overall shapes but 
allow their amplitudes and widths to change according to the 
management of the system’s parameters such as dispersion, 
nonlinearity, gain, inhomogeneity, and so on [25–27].

Recently, the research focus has been shifted towards non-
linear waveguides exhibiting higher order nonlinear effects. 
This should not be surprising because most of the practical 
cases have shown that the cubic model is not adequate for 
a realistic description of physical systems. In this setting, 
Ponomarenko and Haghgoo have developed a new model 
governing the propagation of an optical beam in a centrosym-
metric nonlinear medium doped with resonant impurities in 
the limit of a large light carrier frequency detuning from the 
impurity resonance [28]. Noting that the resonant impurities 
could be rare-earth element atoms, erbium-doped glasses, or 
semiconductors doped with quantum dots (QDs). Considering 
the effect of tapering in the waveguide medium, this model 
has been recently extended to study the propagation behavior 
of chirped self-similar pulses by tailoring of the tapering func-
tion [29].

However, in realistic optical communications, the pres-
ence of nonuniformities that are due to various factors can 
profoundly alter the wave dynamics. Those nonuniformities 
often lead to such effects as the variable dispersion, phase 
modulation, and gain or loss [30]. Due to its potential appli-
cations, the nonlinear wave propagation in inhomogeneous 
systems has attracted special attention because these systems 
are considered to be more realistic than their corresponding 
homogeneous counterparts [31]. In the context of nonlinear 
optics, the first soliton dispersion management experiment in 
a fiber with hyperbolically decreasing group velocity disper-
sion was realized by Bogatyrev et al [32]. Moreover, the non-
linearity management in optics has been done experimentally 

using femtosecond pulses and layered Kerr media consisting 
of glass and air in [33].

In this paper, we consider the most general case, when 
the wave evolution occurs in a real tapered centrosymmet-
ric nonlinear waveguide doped with resonant impurities 
whose diffraction, nonlinearity, and gain profile are allowed 
to change with the propagation distance. We will investigate 
the evolutions of chirped self-similar soliton solutions in the 
inhomogeneous nonlinear waveguide in the presence of all 
the distributed physical parameters. By using the improved 
homogeneous balance principle and the F-expansion method, 
we present exact self-similar solutions, including the bright 
and dark soliton solutions. The propagation dynamics of these 
self-similar solutions are discussed in the linearly chirped and 
unchirped cases by choosing different types of tapering pro-
file. The results show that these self-similar optical structures 
can be generated and effectively controlled by modulating the 
system parameters.

The outline of this paper is as follows: in section  2 the 
generalized NLSE with varying diffraction, quintic nonlin-
eariy, tapering, and gain or absorption is presented to model 
the optical beam propagation in an inhomogeneous tapered 
graded-index waveguide doped with resonant impurities. This 
section also describes the homogeneous balance principle and 
the F-expansion technique for the model under consideration, 
and introduces exact general self-similar wave solutions of the 
same. In section 3, we present the exact linearly chirped self-
similar bright and dark soliton solutions and their characteris-
tics. In section 4, we investigate the dynamics of self-similar 
solitons in a periodically distributed amplification waveguide 
and a diffraction decreasing waveguide. The final section is a 
summary of the main results.

2.  Model equation and general self-similar solution

We are considering the following generalized quintic NLSE, 
representing optical beam propagation in an inhomogeneous 
tapered centrosymmetric nonlinear waveguide doped with 
resonant impurities:

i
∂ψ

∂z
+

β(z)
2

∂2ψ

∂x2 +
1
2

f (z)x2ψ + γ(z) |ψ|4 ψ = i
g(z)

2
ψ� (1)

where z and x are the normalized dimensionless variables and 
ψ represents the complex envelope of the electric field. The 
functions β(z) and g(z) represent the diffraction coefficient 
and the net gain or loss, respectively. The inhomogeneous 
parameters f (z) and γ(z) denote tapering and quintic nonlin-
earity, respectively. Here all physical parameters β, f , γ  and g 
are functions of the propagation distance z.

This equation describes the amplification (when g(z) > 0) 
or attenuation (when g(z) < 0) of light beams propagating non-
linearly inside an inhomogeneous tapered centrosymmet-
ric nonlinear waveguides doped with resonant impurities. 
As previously noted, equation  (1) with β(z) = γ(z) = 1 
and g(z) = f (z) = 0 has been derived for the first time by 
Ponomarenko and Haghgoo to describe beam propagation in 
a centrosymmetric medium doped with resonant impurities 
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whose resonant frequencies lie sufficiently far away from 
the beam carrier frequency [28]. When β(z) = γ(z) = 1 and 
g(z) = 0, equation  (1) turns into the NLSE in [29]. To the 
best of our knowledge, the exact chirped self-similar soliton 
solutions of the inhomogeneous equation (1) with distributed 
diffraction, nonlinearity, tapering, and gain (loss) term have 
not been considered so far. Our goal here is to study the evo
lutions of chirped sel-similar solitons in the tapered graded-
index nonlinear waveguide amplifier within the framework of 
the model (1).

Generally, equation  (1) is not integrable. To solve this 
model, we begin our analysis by writing the complex function 
ψ(z, x) in a polar form as

ψ(z, x) = A(z, x) exp [iΦ(z, x)] ,� (2)

where the amplitude A(z, x) and phase Φ(z, x) are real func-
tions of z and x. Substituting equations (2) into (1) and sepa-
rating imaginary and real parts, we have

Az +
β

2
(2AxΦx + AΦxx)−

g
2

A = 0,� (3)

−AΦz +
β

2
(
Axx − AΦ2

x

)
+

1
2

f x2A + γA5 = 0.� (4)

According to the homogeneous balance principle and the 
F-expansion method [34, 35], the solutions of equations (3) 
and (4) can be selected as the following forms:

A(z, x) = h(z)F (ξ) ,� (5)

Φ(z, x) = C(z)x2 + Γ(z)x +Ω(z),� (6)

ξ(z, x) = p(z)x + q(z)� (7)

where C(z), Γ(z), and Ω(z) are the parameters related to the 
phase-front curvature, the frequency shift, and the phase 
offset, respectively, to be determined. Parameter functions 
p(z) and q(z) are related to the width and the group velocity, 
respectively. We note that here the varying parameter h(z) can 
be used to modulate the amplitude of self-similar waves. For 
the present problem, we assume that F (ξ) in (5) satisfies the 
generalized auxiliary elliptic equation [36]:

F′2 = c0 + c2F2 + c4F4 + c6F6,� (8)

where F′ = dF/dξ, and c0, c2, c4, and c6 are all real constants.
Substituting expressions (5)–(8) into equations  (3) 

and (4), collecting coefficients of power of xkFl and √
c0 + c2F2 + c4F4 + c6F6  (k = 0, 1, 2; l = 0, 1, 2, 3) then 

setting each coefficients to zero, we obtain the following over-
determined system of equations:

hz + Cβh − 1
2

gh = 0,� (9)

hpz + 2Cβph = 0,� (10)

hqz + βpΓh = 0,� (11)

−hΩz +
1
2
βp2hc2 −

1
2
βΓ2h = 0,� (12)

3
2
βhp2c6 + γh5 = 0,� (13)

βhp2c4 = 0,� (14)

hΓz + 2CβΓh = 0,� (15)

hCz + 2βhC2 − 1
2

f h = 0� (16)

where the subscript means the derivative with respect to z. 
Solving equations (9)–(16) self-consistently, one obtains the 
parameter functions:

C(z) =
Wz

2βW
,� (17)

Γ(z) =
Γ0

W
,� (18)

Ω(z) = Ω0 −
(
Γ2

0 − c2p2
0

)
2

∫ z

0

β(s)
W2(s)

ds,� (19)

p(z) =
p0

W
,� (20)

q(z) = q0 − p0Γ0

∫ z

0

β(s)
W2(s)

ds,� (21)

h(z) =
h0√
W

exp

[
1
2

∫ z

0
g(s)ds

]
� (22)

and the conditions on tapering, gain and width functions:

βWzz − βzWz = f (z)β2W,� (23)

g(z) =
1
2

(
γβz − βγz

γβ

)
� (24)

where the subscript 0 denotes the initial values of the corre
sponding parameters at distance z  =  0, and W(z) is the width 
of the self-similar wave. We also obtain the condition c4  =  0 
from equation (14).

Incorporating these results back into equation  (2), we 
derive the general self-similar wave solutions to the inhomo-
geneous NLSE given in equation (1) as

ψ(z, x) =
h0√
W

exp

[
1
2

∫ z

0
g(s)ds

]
F (ξ) exp [iΦ(z, x)] ,� (25)

where the similarity variable and phase are given respectively 
as

ξ =
p0

W(z)
x − p0Γ0

∫ z

0

β(s)
W2(s)

ds + q0,� (26)

Φ(z, x) =
Wz

2βW
x2 +

Γ0

W
x −

(
Γ2

0 − c2p2
0

)
2

∫ z

0

β(s)
W2(s)

ds +Ω0

� (27)
with F (ξ) satisfying equation (8).

Equation (25) together with the relations (26) and (27) are 
the central theoretical results representing the general form of 
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exact linearly chirped self-similar solutions for the GNLSE 
(1) subject to constraints (23) and (24) on the physical param
eters. These important results show the universal influence of 
the width parameter W(z) on the properties of wave solutions. 
It influences not only the form of the amplitude, the phase, 
and the group velocity, but also the curvature of the wavefront, 
the spatial frequency shift, and the homogeneous phase shift. 
We mention that for different tapering profiles F(z), W(z) can 
be obtained from equation (23) for a given diffraction man-
agement function β(z). Remarkably, the phase function (27) 
indicates that the self-similar beams obtained here are line-
arly chirped. This chirping property is very interesting from a 
practical point of view.

It is noteworthy that the general self-similar solution (25) 
can be rewritten as (if setting h0 = p0 = 1):

ψ(z, x) =
1√

W(z)
F
[

x − xg(z)
W(z)

]
eiΦ(z,x)+G(z),� (28)

where G(z) = 1
2

∫ z
0 g(s)ds and xg(z) signify the guiding-center 

position given by

xg(z) = W(z)
(
Γ0

∫ z

0

β(s)
W2(s)

ds − q0

)
.� (29)

Obviously, this form of the self-similar wave solution is more 
general than the known result [28, 29] because of the appear-
ance of distributed diffraction, nonlinearity, and the loss gain 
coefficients parameters in the the beam’s parameters; and thus 
it also provides a possible way to tune experimentally the 
self-similar wave by selecting different forms of them. If one 
can determine the functions F (ξ) from the nonlinear ordinary 
differential equation (8), then we can construct the self-similar 
solutions of the class of NLSE under investigation based on 
the general wave form (25). It is well known that the auxil-
iary ordinary differential equation  (8) is exactly solved and 
has localized solutions, given by bright and dark solitons (at 
c0  =  0) [37, 38]. As shown previously, the condition c4  =  0 is 
required here, which leads equation (8) to be more difficult for 
solving than that of the corresponding equation with c4 �= 0. 
In the following, we find two types of closed form solutions 
of this equation that we will use to construct the exact self-
similar wave solutions of equation (1) exhibiting interesting 
nontrivial behavior.

3.  Chirped self-similar soliton solutions

Below, the explicit localized chirped self-similar solutions of 
equation (1) by employing the closed form solutions of equa-
tion (8) (for the case c4  =  0) and the general waveform (25) 
are presented in two types.

3.1.  Chirped self-similar bright solitons

We have find a self-similar bright soliton solution for equa-
tion (1) in the following form:

ψ(z, x) =
h0√
W

exp

[
1
2

∫ z

0
g(s)ds

]
A sech1/2 (µξ) exp [iΦ(z, x)] ,

� (30)

where

A =

(
−c2

c6

)1/4

,µ = 2
√

c2� (31)

with c2  >  0 and c6  <  0. Here the constant c0 takes the value 
c0  =  0.

3.2.  Chirped self-similar dark solitons

We have find another solution, representing a chirped self-
similar dark soliton given by the following expression:

ψ(z, x) =
h0√
W

exp

[
1
2

∫ z

0
g(s)ds

]
 B tanh (ηξ)√

3 − tanh2 (ηξ)


 exp [iΦ(z, x)] ,

� (32)
where

B =
√

2
(
− c2

3c6

)1/4

, η =
√
−c2� (33)

with c2  <  0 and c6  >  0. It should also be emphasized that 
the constants c0, c2 and c6 have the following relation: 

c0 = − 2c2
3

√
− c2

3c6
.

Having obtained the exact self-similar soliton solutions 
of equation  (1), our next aim is to analyze their propaga-
tion characteristics under diffraction and nonlinear manage-
ment by considering various forms for both varied diffraction 
and nonlinearity parameters which turn out to be of physical 
relevance.

4.  Dynamical behavior of chirped self-similar 
solitons

Now we shall discuss the dynamical properties of the obtained 
self-similar solitons for the various choices of the system 
parameters. We observed that self-similar beams propagation 
and formation in the present waveguide can occur when five 
functions β(z), f (z), γ(z), g(z), and W(z) satisfy the condi-
tions (23) and (24). In the following, the soliton propagation 
is studied in a tapered ( f (z) �= 0) and an untapered wave-
guide ( f (z) = 0) under varying diffraction and nonlinearity 
profiles.

4.1.  CASE-I: periodically distributed amplification waveguide

As a first example, we discuss the evolutional behaviour of 
the self-similar beams in a periodically distributed waveguide 
whose diffraction parameter is distributed according to [39]

β(z) = β0 cos(σ0z),� (34)

and take the quintic nonlinearity parameter γ(z) as

γ(z) = γ0 cos(σ0z)e−κz,� (35)

where β0, σ0  and γ0 are arbitrary constants. In this situation, 
the gain (loss) distributed function (24) is of the constant form 
g(z) = κ/2, which corresponds to the diffraction decreasing 
(increasing) waveguide for κ < 0 (κ > 0).
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H Triki et al

5

We concentrate here on the specific case of self-similar 
solitons propagation in an untapered periodically distributed 
waveguide, that is f (z) = 0. In this case, the beam width can 
be obtained from equation (23) as:

W (z) = W0

(
1 + C0

∫ z

0
β(s)ds

)
,� (36)

where W0 and C0 are constants related to the initial beam 
width and the initial chirp, respectively. In the following, 
without the loss of generality, we will let W0  =  W(0)  =  1 [16, 
40]. We notice that the width of the beam vary linearly with 
the propagation distance z in the case of a constant diffraction 
system. Especially if β(z) = 1 and the phase chirp C in (6) 
is replaced by  −C, the similariton width (36) can be readily 
reduced to the one in [28].

Inserting equations  (36) into (27), one obtains the phase 
function as

Φ(z, x) =
C0

1 + C0
∫ z

0 β(s)ds
x2

2
+

Γ0

1 + C0
∫ z

0 β(s)ds
x

−
(
Γ2

0 − c2p2
0

)
2

∫ z

0

β(s)(
1 + C0

∫ z
0 β(s)ds

)2 ds +Ω0.

� (37)

From these results, we can see that the accumulated diffrac-
tion D(z) =

∫ z
0 β(s)ds influences the form of the width and 

phase and consequently the amplitude, the chirp, and the 
group velocity parameters.

The evolution of the intensity distribution for the self- 
similar bright soliton solution (30) and dark solution (32) are 
illustrated for the case of unchirped beams (C0  =  0) in fig-
ures  1 and 2, respectively. The results for the chirped self-
similar solitons (C0 �= 0) are shown respectively in figures 3 
and 4. On comparing these figures, we can clearly see that 
the chirp C0 leads to the periodical change in the intensity 
of the self-similar structures. One can also see the snake-like 
behavior of the intensity distributions in the case of unchirped 
beams (figures 1 and 2). For this case, the soliton’s center is 
oscillating with the propagation distance. It should be noted 
that the transverse oscillations of the self-similar waves inten-

sity result especially from p0Γ0
∫ z

0
β(s)

W2(s)ds in equation (26).

4.2.  CASE-II: diffraction decreasing optical waveguide

Let us consider another distributed system, which is a realistic 
optical waveguide with decreasing diffraction as follows [39]

β(z) = −σ0 exp (σ0z) ,� (38)

Figure 1.  Intensity distribution of (a) and (b) the bright soliton given by equation (30) with c2 = 1
4, c6 = − 1

4 , c0  =  0. Other parameters are 
h0  =  1, Γ0 = 2, β0 = 0.6, σ0 = 1.2, q0  =  0, κ = 0, and C0  =  0, and p 0  =  1.

Figure 2.  Intensity distribution of (a) and (b) the dark soliton given by equation (32) with c2  =  −1, c6 = 4
3, c0 = 1

3. Other parameters are 
the same as that of figure 1.

Laser Phys. 29 (2019) 085401



H Triki et al

6

and quintic nonlinearity parameter γ(z) as

γ(z) = −σ1 exp (σ1z)� (39)

where σ0  and σ1 are real constants (with σ0 < 0 for diffraction 
deceasing waveguides).

We concentrate especially on analyzing the propagation 
characteristics of the self-similar solitons when the nonlin-
ear waveguide exhibits the tapering effect. Noting that the 
existence of the tapering function f (z) makes the solution of 
equation  (23) more difficult than that of the corresponding 

Figure 3.  Intensity distribution of (a) and (b) the bright soliton given by equation (30) with c2  =  0.01, c6  =  −1, c0  =  0. Other parameters 
are h0  =  0.2, Γ0 = 0, β0 = 1.8, σ0 = 1.8, q0  =  0, κ = 0, and p 0  =  0.01, and C0  =  0.2.

Figure 4.  Intensity distribution of (a) and (b) the dark soliton given by equation (32) with c2  =  −4, c6 = 16
3 , c0 = 4

3. Other parameters are 
the same as that of figure 3.

Figure 5.  Contour plot depicting the nonlinear compression of (a) the bright soliton given by equation (30) with c2  =  0.025, c6  =  −0.1, 
c0  =  0 and (b) the dark soliton given by equation (32) with c2  =  −1, c6  =  2.65, c0  =  0.236. Other parameters are h0  =  0.141, Γ0 = 1, 
q0  =  0, p 0  =  1, σ0 = −0.4, and σ1 = −0.4.

Laser Phys. 29 (2019) 085401
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equation  in the case of f (z) = 0. Here, the shape of the 
taper f (z) is chosen to take an exponential profile of the 
form f (z) = f0 exp (−σ0z), which in the limit z → 0, tends 
toward f (z)  =  f 0 that corresponds to the case of constant 
tapered waveguide [29]. Then, we can find the beam’s width 
W(z) = W0 exp

(
σ0
2 z

)
 as can be obtained from the condition 

(23). This type of width was used by Dai et  al for study-
ing the dynamical behaviors of similaritons in a realistic 
cubic-quintic waveguide with hyperbolically decreasing dif-
fraction [41]. To satisfy the parametric condition (23), we 
set f0 = σ0/4. Accordingly, the distributed gain/loss func-
tion g(z) can be obtained exactly through equation  (24) as 
g(z) = (σ0 − σ1) /2 (with σ0 > σ1 for the gain and σ0 < σ1 
for the loss).

The propagation dynamics of the self-similar bright soliton 
(30) and dark soliton (32) solutions with diffraction and non-
linearity coefficients given above are presented in figures 5(a) 
and (b) respectively. As it is seen from this figure, the width of 
the two solitons gets compressed along propagation distance, 
which can be proved useful in practical applications.

Stability of these chirped self-similar solitons with respect 
to some perturbations is a significant issue, because only 
stable solitons are promising for experimental observations 
and physical applications. It may be amplitude perturbation, 
random noises and the slight violation of the parametric con-
ditions. We point out that stability analyses can be done by 
numerical simulations and the linear stability theory of the 
solutions with perturbations initially implanted. In the present 
study, we have found that the obtained self-similar localized 
structures characteristically exist due to a balance among dif-
fraction, quintic nonlinearity, tapering, and gain or loss. The 
stability aspects of such privileged closed form solutions 
typically require detailed individual analysis based on such 
balance aspects. Detailed stability analyses are now under 
investigation.

5.  Conclusions

In this paper, we have investigated an inhomogeneous non-
linear Schrödinger equation with diffraction and quintic non-
linearity in the presence of tapering and gain or loss, which 
governs the optical beam propagation in an inhomogeneous 
tapered centrosymmetric nonlinear waveguide doped with 
resonant impurities. We have obtained exact chirped self-
similar bright and dark soliton solutions of the model, using 
the homogeneous balance principle and the F-expansion tech-
nique. Conditions on the inhomogeneous waveguide param
eters for the existence of these self-similar structures are also 
found. We have discussed the propagation behaviors of self-
similar solitons in a periodic distributed waveguide system 
and an exponential diffraction decreasing waveguide. It is 
observed that the self-similar wave structure and dynamical 
behavior can be controlled by choosing the system parameters 
appropriately. The obtained chirped structures can be used in 
various applications in pulse compression or amplification 
and thus they are particularly useful in the design of non-
linear waveguide amplifiers, optical pulse compressors, and 

solitary-waves propagating in tapered centrosymmetric non-
linear waveguides doped with resonant impurities. In addition, 
these results may contribute to improve the understanding of 
physical processes in tapered centrosymmetric waveguides 
such as the interactions between different types of nonlinear 
localized waves.
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