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1. Introduction

Optical solitons form the basic fabric in telecommunications industry. These soliton molecules transmit loads of information across
the globe in a matter of a few femto-seconds. The speed and efficiency of soliton dynamics is very commendable and therefore is the
current cutting edge technology of telecommunications industry. There is a wide variety of aspects of soliton science in optics, Bose-
Einstein condensates that are addressed in a wide variety of works [1-15]. These include conservation laws, collision-induced timing
jitter, stochastic perturbation, ghost pulses evolution, cross-talk and many others. This paper studies a very important aspect of soliton
dynamics that is addressed with quadratic-cubic (QC) law of refractive index.

One of the most important features in optical soliton dynamics is the aspect of quasi-monochromaticity. The departure from the carrier
frequency of the soliton leads to relative width of the spectrum [5-7,9]. This leads to an abundance of perturbation terms and hence the
soliton perturbation theory comes to play that leads to the adiabatic parameter dynamics of such solitons. This dynamics is applicable
for both bright as well as dark solitons. The current work focuses on obtaining this adiabatic parameter dynamics of bright solitons only
that is studied with QC law of refractive index [1-4,14]. The adiabatic dynamics of soliton power and soliton frequency are recovered that
led to its stable fixed point which eventually yielded the effect of optical soliton cooling. The velocity of the soliton also undergoes small
change and its dynamics has also been captured for the model. The perturbation terms are of Hamiltonian as well as non-Hamiltonian
type and finally a couple of non-local type perturbation effects are also addressed. The details are sketched in the rest of the paper after
a quick re-visitation of the unperturbed model [4,14].

1.1. Governing model
The dimensionless form of the governing nonlinear Schrédinger’s equation with QC nonlinearity is written as [4,14]:
iQt+GQXx+<bl gl + bz Iqlz)q=0 )

* Correspondence to: Department of Physics, Chemistry and Mathematics, Alabama A&M University, Normal, AL 35762-4900, USA.
E-mail address: biswas.anjan@gmail.com.

https://doi.org/10.1016/j.physleta.2020.126528
0375-9601/© 2020 Elsevier B.V. All rights reserved.


https://doi.org/10.1016/j.physleta.2020.126528
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2020.126528&domain=pdf
mailto:biswas.anjan@gmail.com
https://doi.org/10.1016/j.physleta.2020.126528

2 A. Biswas / Physics Letters A 384 (2020) 126528

where q(x, t) is a complex-valued dependent variable that represents the wave profile and i = +/—1. The independent variables x and t are
the spatial and temporal variables respectively. The constants a and b; for j =1, 2 are real-valued and represent chromatic dispersion and
self-phase modulation respectively. This model had been extensively studied, both in polarization-preserving fibers as well as birefringent
fibers, and soliton solutions have been recovered [1-4,14]. The bright 1-soliton solution is given by [14]:

A

)= i(—kx+wt+6p) 5
900 D + cosh[B(x — vt)]e @)

where A represents the soliton amplitude, B is its width with a parameter is D. The phase component gives k as the soliton frequency
and w is the soliton wave number while 6y is the phase constant. The velocity of the soliton is related as:

v =—2ak. (3)
Finally, the amplitude (A), the width (B) and the parameter D are respectively given as:
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These relations yield the following couple of parameter restrictions:
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The conservation laws for (1) are [14]:
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In (9) and (10), the Gauss’ hypergeometric function is written as:
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where the Pochhammer symbol is:
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The condition that guarantees convergence of the series is casted as
lz| <1, (13)
which for (9) and (10) means
—1<D<3. (14)
Finally, Rabbe’s test of convergence reveals another criterion for convergence of the series, namely
y<a+p (15)

which is valid for both of the hypergeometric functions listed in (9) or (10).
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2. Soliton perturbation
The perturbed NLSE with QC nonlinearity is written as [5-7,9]

iqe + aqxx + (b1 lql + b2 Iqlz)q =ieR

(16)

where R represents perturbation terms while the perturbation parameter € is from quasi-monochromaticity and represents the relative
width of the spectrum with typically 0 < € « 1. When the perturbation terms are turned on, the adiabatic variation of the soliton power

and frequency are governed as [5-7,9]:
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The variation of the soliton velocity is also governed by the relation:
x
€
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2.1. Adiabatic parameter dynamics
The perturbation terms studied in this paper are written as [7,9]:
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Here, in (20), § represents multi-photon absorption, while « is the inter-modal dispersion, 8 represents band-pass filters while y is the
third-order dispersion. Next, A is the self-steepening effect, while 6 gives the effect of nonlinear dispersion and p accounts for nonlinear
dissipation. Then again, &, n and ¢ stem from quasilinear pulses while y is from intra-pulse Raman scattering and finally, o for j=1,2

gives saturable nonlinear effect.
With these perturbation terms, the adiabatic variation of the soliton power and frequency are indicated below:
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The dynamical system given by (21)-(22) has a fixed point (A, ¥) = (A, 0), namely a sink. Here the value of the amplitude A is retrievable
from the implicit equation
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Thus, the perturbed soliton will travel down the optical fiber, having QC nonlinearity, with a fixed amplitude A and maintain the speed of
light. Thus, the phenomena of optical soliton cooling is illustrated with QC nonlinearity.
Here, the constraint condition (14), by virtue of (21)-(24), transforms to:

- 2bq
\/4b3 +18b5 (e + ax2)

Fig. 1 represents the profile of perturbed bright 1-soliton solution to the model given by (17). The parameter values chosen are € = 0.05,
a=bi=by=1,k=—-w=-02,0a==0.1,1=02,y=1and p=£=0.1.

-1

<1. (25)

3. Conclusions

This paper laid down the adiabatic parameter dynamics of optical solitons from QC nonlinearity. The phenomena of optical soliton
cooling is also illustrated. It must be noted that it is not possible to find the evolution of all the parameters, namely the amplitude
(A), inverse width (B), velocity (v), frequency («x) and the wave number (w) from the two conservation laws. In that case, “variation of
parameters”, method of “collective variables” as well as “method of moments” become handy [16-19].

The results are thus meaningful and carries a lot of future research prospects. These results lay a strong foundation to study additional
aspects with the model, such as four-wave mixing, collision-induced timing jitter, addressing stochastic perturbation [20] and several
others. One additional issue is to study this quasi-monochromatic soliton dynamics with dark solitons as well as bright-dark solitons [15].
These studies are all under way and the results are currently awaited.
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Fig. 1. Perturbed bright 1-soliton solution propagation.
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