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Abstract: This paper presents optical Gaussons by the
aid of the Laplace–Adomian decomposition scheme. The
numerical simulations are presented both in the pre-
sence and in the absence of the detuning term. The error
analyses of the scheme are also displayed.
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1 Introduction

The study of optical solitons with log-law nonlinearity, also
known as optical Gaussons, has gained popularity during the
last decade. Several analytical results have been reported
[1–9]. In this context, soliton perturbation theory, quasi-
stationary optical Gaussons, and birefringent fibers with
dense wavelength division multiplexing (DWDM) technology
have been addressed. Recently, shifting gears, the interest on
the nonlinear Schrödinger’s equation (NLSE) with log-law
nonlinearity, has emerged in the direction of numerical
studies [10]. The travelling wave solution technology
for finding the partial differential equations (PDEs) was

developed by various studies [11–18]. This paper addresses
optical Gaussons using the Laplace–Adomian decomposi-
tion method (LADM). This is a modified version of the
popular Adomian decomposition method (ADM) that has
gained extreme popularity during the last decade or so.
ADM has been successfully implemented to a wide variety
of nonlinear evolution equations, and several impressive
numerical results have been reported. In this work, the
LADM scheme will be first derived and discussed in detail
and subsequently implemented to NLSE with log-law
nonlinearity. The model will be studied both in the
presence and in the absence of the detuning term. The
numerical simulations all appear with their respective error
analyses, and these are all depicted in respective tables
and figures.

2 Governing equation and optical
Gaussons

2.1 The model

To study the behavior of Gaussons, we consider the
dimensionless form of the NLSE with log-law nonlinearity
considered in ref. [19–21] and given by

+ + | | = ( )iu au bu u f x uln ,t xx
2 (1)

where u = u(x, t) is the complex amplitude of the wave
and x and t are spatial and temporal coordinates,
respectively. In the optical fiber contexts, the coefficient
a is the group velocity dispersion and b is the coefficient
of log-law nonlinearity. On the right-hand side of
equation (1), f(x) represents the spatially dependent
detuning term [22,23].

Although the usual norm is to study solitons in a
Kerr nonlinear medium, there are some advantages to
study log-law nonlinearity over Kerr law nonlinearity.
One immediate advantage is that solitons from Kerr law
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nonlinearity produce radiation that is not present for
NLSE in a log-law medium [24].

2.2 Optical Gaussons

2.2.1 Case f(x) = 0

In this case, the one-soliton solution to (1), also known
as Gaussons, is given by [4,25]

( ) =
− ( − ) ( )u x t Ae e, ,B x νt iϕ x t,2 2 (2)

where A is the amplitude of the Gaussons and B is
related to the coefficients of NLSE (1) by means of

=B b
a2

. (3)

Now, choosing the phase as

( ) = − + +ϕ x t κx ωt θ, (4)

where κ represents the frequency of the Gaussons, while
θ and ω are the phase and the wavenumber of the
soliton, respectively.

The velocity of the Gausson is obtained from the
frequency and coefficients of the model (1) and is given by

= −ν aκ2 (5)

and the wave number is

= ( ) − −ω b A aκ b2 ln .2 (6)

Observing equation (3), the constraint condition that
guarantees the existence of Gaussons is given as follows:

>ab 0. (7)

Finally, in the present case, the optical Gaussons
solution of the NLSE with log-law nonlinearity is given by

( ) =
− ( − ) [− + + ]u x t Ae e, .B x νt i κx ωt θ2 2 (8)

2.2.2 Case f(x) = n

In this case, the starting hypothesis for log-law non-
linearity is given by [4,22,26]

( ) =
( − ) [− + + ]u x t Ae e, .Ct D x i κx ωt θ2 2 (9)

where A is the amplitude of the Gaussons and the
constants C and D are related to the dynamics of the
model by [22]

=

− +

=C b κ n
b

D b
a2 2

.2 (10)

From the phase component, the wavenumber ω is
given by

= ( ) − −ω b A aκ b2 ln .2 (11)

Finally, equation (10) prompts the constraint condi-
tion as follows:

>ab 0. (12)

3 Analysis of the methodology

The Adomian method combined with the Laplace trans-
form LADM is a decomposition method that gives us
solutions for nonlinear differential equations in terms of
a convergent series [27]. The LADM was established and
used for the first time by Khuri [28] for solving
differential equations.

We consider the general form of nonlinear partial
differential equations with the initial condition in the
following equation:

( ) + ( ) + ( ) = ( )

( ) = ( )

L u x t Ru x t Nu x t h x t
u x g x

, , , , ,
, 0

t (13)

where Ltu = ut, R is a linear operator that includes partial
derivatives with respect to x, N is a nonlinear operator,
and the function h is a source term, which must be
independent of u.

Solving for Ltu(x, t) and applying Laplace transform
on both sides of equation (13), we obtain

� �{ ( )} = { ( ) − ( ) − ( )}L u x t h x t Ru x t Nu x t, , , , .t (14)

Using the known property of the Laplace transform with
respect to the first derivative, that is, � { ( )} =u x t,t

� { ( )} − ( )s u x t u x, , 0 , the expression (14) is equivalent to

�( ) − ( ) = { ( ) − ( ) − ( )}su x s u x h x t Ru x t Nu x t, , 0 , , , (15)
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In the homogeneous case, because � is a linear operator,
we have

�( ) =

( )

− { ( ) + ( )}u x s g x
s s

Ru x t Nu x t, 1 , , . (16)

Now, considering the initial condition given in equation
(13), u(x, t) are obtained easily by applying the inverse
Laplace transform �−1 on both sides of equation (16)

� �( ) = ( ) − { ( ) + ( )}
−u x t g x

s
Ru x t Nu x t, 1 , , .1





(17)

The ADM decomposes u(x, t) as a series with components
un(x, t) and N(u) as a series with components An(u0,
u1,…,un), namely,

∑( ) = ( )

=

∞

u x t u x t, ,
n

n
0

(18)

∑( ) = ( … )

=

∞

Nu x t A u u u, , , , .
n

n n
0

0 1 (19)

In equation (19), { }
=

∞An n 0 is the so-called Adomian
polynomials sequence established in ref. [29], which are
calculated recursively by

∑( … ) =

!

= …

=

∞

=

A u u
n

d
dλ

N λ u

n

, , 1 ,

0, 1, 2,

n n
n

n
i

i
i

λ

0
1 0




















 (20)

Substituting (18) and (19) into equation (17) gives
rise to

� �∑ ∑

∑

( ) = ( ) − ( )

+ ( … )

=

∞

−

=

∞

=

∞

u x t g x
s

R u x t

A u u u

, 1 ,

, , , .

n
n

n
n

n
n n

0

1

0

0
0 1




















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







(21)

From equation (21), each of the components of the
series (18) is obtained by means of the recursion scheme,
for each n = 0, 1, 2,…

� �

( ) = ( )

( ) = − { ( ) + ( … )}+

−

u x t g x

u x t
s

Ru x t A u u

, ,

, 1 , , , .n n n n

0

1
1

0












(22)

The convergence of this series has been studied in
ref. [30]. Finally, for numerical purposes, the N-term
approximate

∑( ) = ( ) ≥

=

−

u x t u x t N, , , 1,N
n

N

n
0

1
(23)

can be used to approximate the exact solution. The exact
solution is obtained by adding all the terms, that is,

( ) = ( )

→∞

u x t u x t, lim , .
N

N (24)

Now we will implement the algorithm provided by LADM
for the solution of NLSE with log-law nonlinearity.

3.1 Gaussons solution of the NLSE with
log-law nonlinearity through LADM

In this section, the Laplace transform decomposition
algorithm given by equation (22) is applied to find
the solution to the following NLSE with log-law non-
linearity (1):

( ) = ( ) − ( ) ( )

+ ( ) | ( )|

u x t iau x t if x u x t
ibu x t u x t

, , ,
, ln , .

t xx
2 (25)

Comparing (25) and (13), we identify the operators Lt
and R by

( ) = ( ) = ( ∂ − ( )) ( )L u x t u x t Ru i a f x u x t, , , , ,t t x
2 (26)

whereas that the nonlinear term turns out to be

∑= ( ) | ( )| = ( … )

=

∞

Nu ibu x t u x t ib A u u, ln , , , ,
n

n n
2

0
0 (27)

Using (20), the first Adomian’s Polynomials of N(u)
are as given as follows:

= | |
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From equation (22), we achieve the series solutions
as follows:
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In Section 4, we illustrate the LADM for solving the NLSE
with log-law nonlinearity (1) for different special cases.

4 Numerical simulations

In this section, some examples are provided to show the
reliability and the efficiency of the proposed method in
solving nonlinear differential equations used in the mod-
eling of dynamics in quantum optics of the type (1). Our
computations are performed by MATHEMATICA software.

4.1 Gaussons without detuning term

Table 1 and Figures 1–3.

Table 1: Gaussons without detuning term

Cases a b A B κ ν ω N |Max error|

1 0.5 1.0 2.0 1.00 0.5 −0.5 0.26 12 1.0 × 10−10

2 0.3 2.0 2.5 1.82 1.0 −0.6 1.36 12 1.5 × 10−10

3 0.2 3.0 3.0 2.73 1.0 −0.4 3.39 12 1.5 × 10−9

Figure 1: Gausson without detuning term: case 1: numerically computed profile (left) and absolute error (right).
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4.2 Gaussons with detuning term

Table 2 and Figures 4–6.

5 Conclusions

This paper successfully studied optical Gaussons that
emerged from NLSE with log-law nonlinearity by the aid

of LADM. The results of this paper are being reported for
the first time. The error analysis proved that the results
appear with grand success and are truly impressive. The
results of this paper thus stand on a strong footing to
move further along. Later, this scheme will be imple-
mented to address the model further along. They are the
application of the scheme to study Gaussons in
birefringent fibers, DWDM systems, as well as optical
couplers, photonic crystal fiber (PCF), metamaterials,

Figure 2: Gausson without detuning term: case 2: numerically computed profile (left) and absolute error (right).

Figure 3: Gausson without detuning term: case 3: numerically computed profile (left) and absolute error (right).

Table 2: Gaussons with detuning term

Cases a b A C D κ ω f(x) N |Max error|

1 0.5 1.0 2.5 0.50 1.0 1.00 0.33 1 12 4.0 × 10−10

2 0.3 0.2 3.0 4.25 0.57 0.5 0.16 2 12 6.0 × 10−10

3 0.2 0.3 4.0 5.00 0.86 0.3 0.51 3 12 2.0 × 10−9
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and other variety of optoelectronic devices. Moreover, addi-
tional numerical schemes will be implemented to address the
model in such optoelectronic devices; one such scheme is the
variational iteration method. Such studies are underway. This
is just the tip of the iceberg.
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