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1. INTRODUCTION

Two important concepts were developed during the
past couple of years. They are the cubic—quartic
(CQ) solitons [3, 9] and Kudryashov’s equation,
namely Kudryashov’s law of nonlinear refractive
index [1, 4—7, 10]. CQ solitons is an extension of
pure-quartic solitons that was first proposed during
2016 [3]. Subsequently, the concept of CQ solitons was
merged with Kudryashov’s law and consequently the
concept of CQ optical solitons with Kudryashov’s law
of refractive index was conceived. Some preliminary
results were reported from this new concept for polar-
ization-preserving optical fibers only [1]. The current
paper extends the same dynamics to birefringent fibers
for polarization-mode dispersion. There are three
cases for the power-law nonlinearity parameter, in
Kudryashov’s form of refractive index, that are taken
into account. These three parameter values are within
the domain of existence of the solitons as reported in
earlier works. The mathematically rigorous extended
trial function scheme is applied to all of the three
cases successfully to reveal soliton solutions to the
model in birefringent fibers. The results are all enu-
merated in the subsequent sections after an introduc-
tory discussion.

1. 1. Governing Model

The governing CQ equation with Kudryashov’s
form of nonlinear refractive index in polarization-pre-
serving fiber is given below [1]:

iqt + iaqxxx + bQXxxx

+ (—+—+ slal" + ¢, |q|2"jq —o, O
g™ lal

with i =~/-1 , where the first term is the linear tempo-
ral evolution, while a represents third-order dispersion
(30D) coefficient and b is the coefficient of fourth—
order dispersion (40D). The constant coefficients ¢;
forj =1, 2, 3, 4 give self-phase modulation (SPM)
effect. The next subsections will introduce the model
in birefringent fibers with three casesatn =1, n = 2
and n = 3. The details are given in the next three sub-
sections.

1.1.1. Case 1: (n = 1). For optical fibers with differ-
ential group delay, KE (1) splits into two components
due to birefringence at # = 1. Then, the vector-coupled
KE reads

plu + QIu
2 2
el +d WP P+ ()

+ Nl + P + (Ocl lul® + B, |V|2)u =0,

iu, +iaU,,, + b, +
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y2\4 " P4

2 2
W +dylul WP 1 3)
(00, WP + By lul*) v = 0,

v, +iayw,, + bV . +

+ N + Ll +

where a,, b, ¢, d;, p;, q;, 1, 0y and B, for /=1, 2 are con-
stants, while the independent variables x and ¢ stand
for spatial and temporal variables, respectively and the
dependent variables u(x, ) and v(x, f) are wave profiles
along the two components. The coefficients @; and b,
are real parameters that independently controls 30D
and 40D respectively, while the coefficients p,;, g, and
r; represent the combination of SPM and cross phase
modulation effects (XPM). The coefficients ¢; and o,
give SPM and the coefficients d, and B, are XPM,
respectively.

1.1.2. Case 2: (n = 2). For optical fibers with differ-
ential group delay, KE splits into two components
from the effect of birefringence at » = 2. In this case,
the governing coupled KE is given by

iu, + iau,. + b, pu
t 1 1 4 2012 4
e lul” + dylul” I + ¢ vl
u 2 2
+—— D (o Ll + By ) u (4)
S lul” + g vl

+ (& " + P VP + G W u =0,

iv, viay,_. + by Prv
t 2V xxx 2V xxxx 4 21 12 4
e W™ + dy W™ lul” + e, lul
% 2 2
+— (o, WP+ B, ) v (5)
L+ g, lul

+ (E W + WPl + G, ) v = 0,

where a;, by, ¢;, d;, e, 1, & Pi» 41, > Brs & My and , for
/=1, 2 are constants. The coefficients a,and b, are real
parameters that independently controls 30D and
40D respectively, while the coefficients p;, ¢, and 1,
represent the combination of SPM and XPM. Also,
the coefficients ¢, f;, o, and §,are SPM, while the coef-
ficients d,, e, g, B, and {, are from XPM, respectively.

1.1.3. Case 3: (n = 3). For optical fibers with differ-
ential group delay, KE splits into two components
because of birefringence at » = 3. Thus, KE in bire-
fringent fibers is

iu, +iau,. +bu,..,
+ iy
3 5
e lul® + d lul* Wl + e W ul + £ 1v]
+ 2 qll; 2 2 (6)
(g, + v P) I + v

+ u(ocl lul® + B, |V|2)\/|Lt|2 + vl

6 6
+ (E,,, ud® + 1l WP + @ WI* lul® + 6, Iv] )u =0,
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v, +iay, .. + bV,
)2\4
W+ dy Wl + ey lul* WP + £, lul®
QZV (7)

+ 2 2 2 2
(g W + By ) I + L
+ v (o0, WP + By lul?) VIl + 1l
+ (Eﬂ W+, W el + &, ld* W + 0, ul)v =0,

where a,, by, ¢;, d, ey, f, & hys P> 1> O, B, &, M, L and 6,
for /=1, 2 are constants. The coefficients g, and b, are

real parameters that independently controls 30D and
40D respectively, while the coefficients g, 4,, p;, q;, O,
B, n;» {, stand for the combination of SPM and XPM.
Also, the coefficients ¢, and &, are SPM, while the
coefficients d,, e;, f;and 0, are XPM, respectively.

2. MATHEMATICAL ANALYSIS
2.1. Case I: (n=1)
To kick off, the initial hypothesis is selected as [2]:

u(x,1) = B(s)exp(if), (8)
v(x,t) = P(s)exp(id), 9

where
s =Xx—vt, (10)

and v the speed of the soliton. The phase ¢ has the
form:

0 =-Kx+ wr+0.

(1)

Here, K is the frequency, ® is the wave number and ®
is the phase constant. Substitute (8) and (9) into (2)
and (3). Then, real parts give

3akP" + b (PY —6P")

+ (b —w-ax’) P +% (12)
P +dP
v 2B p R B (B BB =0,
P + P}
3a,kP + b, (P - 6P}
+ (b — 0—ay’) P, + —22F2 (13)

P +d,P’
42P2

N +RPAB + B +(0,B +B,P) P, =0,
P +P

while imaginary parts are

+

(v +3a® — 461 ) P = (a, — 4bx) PO = (14)

(v +3a,> — 4b,x°) P, — (a, — 4byx) P = (15)
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Now, differentiating (14) and (15) brings about

(v +3a* — 4b°) P

P9 = 1", 16
1 — 4byk (10)
P = (v + 3a,K° — 4b21<3)P2" (17)
a, — 4b,k ’
and then (12) and (13) modify to
3a’Kk — 15a1b11<2 + 5 (v +205°) P
4, :
p A
+(b11<—(o—a, )P+ (18)
+d\P;
L N +(oc1Pl +BB) R =0,
VA + P
3a2k — 15a,b,K” + b, (v + 206,¢°) o
a, — 4b,x ?
+(bhk-0-aK) P+ Py (19)

P +d,P

+ % + iR + B+ (0, + ByBY) By = 0,
B+ P

Next, setting
P =1\R, (20)
where A#0and A # 1, then (18) and (19) can be written as

(3a121< —15abx” + b, (v + 205, )j pp
4b, o

D il 3 2
+—2 19 p_(0+K (q-bK)P (21)
o +dA M 1 - 1
+ "17V1P13 + (0(1 + [317\-2)1314 =0,
3ay = 15, + by (v + 206,6°) | p,
az - 4b2K .
P Dp (0+K(a-bK)P (22

C2}\42 + d2 7\11
+ "27¥11)13 + (0‘27bz + 62)1314 =0,

where A, = V1 + A Equations (21) and (22) have the
same form under the following constraint conditions:

(a, — 4b,x) (3a2K — 15a,b,%* + b, (v + 20b,°))
= (a, — 4b,%) (3a’x — 15a,b,x* + b, (v + 205,¢”))

D (C27\2 + dz) =D (cl + d17V2)’
q = (23)
al - blK = 02 - sz,
rl = rZ’

o, +BA° = oL\ + B,
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Therefore Eq. (21) will now be studied, in the subse-
quent subsection, to reveal cubic—quartic solitons to
the model under the conditions given by (23).

2.1.1. Extended trial function. Suppose the formal
solution of Eq. (21) is structured in the form [1]:

S A
R =)oV, (24)
7=0
where
(W')z = O(y) = I'ty) _ ch RS 20L il o . (2%)
YW 2o+ 40+ %o
Here g,,...0;; o, ---» Us and Y, .., X, are coefficients

that need to be demgnated such that the constants g_,
W, and x, are non-zero. Next, Eq. (25) is rewritten as

Y(v)
(s — 5p) = i
=50 = [ 75t~ Ira™

Balance of the terms AR with P* in (21) leads to

(26)

o=p+2c+2. (27)
Forp=0,c=1landc =4,
P =0 +oV. (28)
Substituting (28) into (21) yields
Lo = Mo, Ha =My Mg = Uy,
Xo =Xo» % =00 0 =0, P =0,
_ 2Kejly + E2639127(,0 _ Ay (nA, + 35290)
2bpy 3e,0
2 2
_ 4qily + 200 (e, (o0 — 4ua03) — 2nM140) (29)
527%013
3 4 2
_ 2l (Qo (21, + 36,0)) — @K + b ) — 60
2u,
where
€, = 3a} —15a,bx + 206K, 30)

62 = O(l + B]}\‘z, 63 = (11 - 4b1K.

By the use of these results, (26) is rewritten as below:

(s —sp) = \/%
4

A dy _ o [dv_GD
\/w4+“3w Pl B Jo(y)

4 My [ My

As a consequence, soliton and other solutions to the
model are:

For ©(y) = (¥ — 8))%, 9, = —0,6, and 5, = 0, plane
wave solutions are recovered as:
Vol. 65
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o
X+ {2K€1M4 + 6253912X0}t
2bu,

X exp {i {—Kx " (2}14 (Qo (2rA, + 362@0)2_ 01K3 + b1K4) - 52“2912} " (_)H ,
Ly

v(x, )=\ |+ o0, -
x4 {2‘(51“4 1 €,€630 Xo}t
2b,

X exp [i {—Kx " 2y (Qo 21\ + 3€,00) — 01K3 + b1K4) - quzglzjt " (_)H
20,
IfO(y) = (v — 8%y —9,), 8, > d,, 9, = —9,0, and s, = 0, rational function solution is procured as:

4@11312 (82 — 81)

2
2 _ 2Ke s + €630 %o
| o et =

X exp {i {—Kx " [2M4 (Qo (2rA, + 3'52@0)2_ 01K3 + b1K4) - ez“z@f P 9}} ’
M4

4911312 (82 — 81)

-2
2 _ 2Ke il + €,€30/%0
1|05 o [Pt} | 39

X exp [i {—Kx " (ZM (Qo (2r\ + 3€,09) — 01K3 + b1K4) - ezuzgfjt " (_)H
21,
However, when ©(y) = (¢ — 8,)%(y — 8,)?, g, = —0,0, and s, = 0, cubic—quartic singular solitons are secured as:

u(x,f) = {Ql (6, -9, )(1 T coth {81 -9, (x n {2‘(51“4 + 5263012X0}t)D}
’ 2 20, 2bu, (36)

X exp {i {—Kx " (2114 (Qo (2rA, + 3'5290)2_ 01K3 + b1K4) - '52“2912} " GH ,
Ly

v(x,f) = {91 (8, = 51)(1 T coth |:81 -9 (x " {2K€1H4 + Gz%@f%o}ﬂj}
2 2%, 2buy 37)

X exp {i {—Kx " (2114 (Qo (2rA, + 362@0)2_ a1K3 + b1‘<4) - ezliz@lzjt " 9} ‘
My
Whenever O(y) = (¢ — 8,)%(v — 8,)(y — 85), 8, > 8, > 85, 09, = —0,8, and s, = 0, cubic—quartic bright soliton is
revealed as:

u(x,t) = |t

(32)

(33)

u(x,t) =

vi(x,H) =\

u(x,t) = D,
%, + cosh {%l (x + {ZKEIM + 626391 Xo
2b1M4 (38)
X exp {i {—Kx n (2H4 (Qo (2R + 3ezg0)2— ax +bx*) - el jl . OH
Ly
v(x,t) = A D,
%, + cosh {%l (x + {2‘{61“4 + €630 Xo} H
2b1M4 (39)
X exp {i {—Kx + (2“4 (o0 (21 + 36290)2— ax’ +bx') — el jz + OH
Ly
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1388 ANJAN BISWAS et al.
where Here, the soliton amplitude and its inverse width are
b _ _ respectively given by 9, and #€,. The condition g, < 0
@D, = a3 = 8)(®, 63), (40) s necessary in order folr the sollitons that are revelaled
d; — 0, to exist.
Fo— 28, — 8, - &; (41) Finally, if ©(y) = (¢ — 8))(y — 8,))(W — 8;)(y — 8y,
: I 8, > 0,> 085> 9d,, g, = —0,0, and s, = 0, Jacobi elliptic
\/ ©, =5, - 53) function (JEF) solutions are derived as:
¥, = (42)
Yy
u(x,1) = 2y :
F +sn2 7€ .(x+ 2KEMs + €501 %o t),k
’ ! 2 ’ (43)
% exp{ {—Kx " (2H4 0 (2RA; + 3e0) — alK + b ) Ez“z@f} " GH’
2u,
v(x, 1) = D, >
L +sn’ x+ {2K€1M4 T €60 Xo}tj,k}
2b, (44)
v exp[ {—Kx " (ZM [ (2717V +3€,09) — alK + b ) quzglzjt n GH’
20,
where
_ (3, -85~ 8y) 45)
(8, — 6;)(8, — 8,)
— 91(61 — 82)(84 — 82) (46)
61 - 84 ’
o, -0
F, =22 47
2= %5 5, (47)
1)/ _ _
%j =( 1) \/(61 83)(62 84) for _] — 2,3 (48)
21,

Here, Sj forj =1, 4 are the zeros of O(y) =

Remark 1. When the modulus £ — 1, from (43) and (44), cubic—quartic singular solitons fall out

9D,

u(x,r) =

F,+ tanh? %j X+ 2Ke My + €2€3Q|2X0}tj
2bp, (49)

X exp {i {—Kx " (2H4 (Qo (2R + 3€y0) — 01K3 + blK Ez“zé’l

v(x,f) = A

o

2u,
D,

%, + tanh’ [%j (x + {2‘(51“4 + €630 Xo} ﬂ

2b1u4 (50)

X exp {i {—Kx " (2H4 (Qo (2r\, + 352@0)2_ alK3 + bl — &0 jt n 9}}
Ly

where 8; = 9,.
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Remark 2. If £k — 0, in this case, periodic singular solutions are

u(x,t) = D, >
o )
2b1u4 (S1)
X exp [i {—Kx " (2H4 (Qo (2r\ +3€,09) — 01K3 + bl Ezl»le 4 GH
2u,
vix,t) = A 2,

F , +sin’ {%, [x + {2‘(‘51“4 T €630 Xo} H
2b1H4 (52)

X exp {i {—Kx " (2H4 (Qo (2R, + 362@0)2_ 01K3 + blK - Ez“zé’l f+ GH
Ly
where §, = §,.

2.2.Case 2: (n=2)
Upon substituting (8) and (9) into (4) and (5), the resulting real parts are

3axB +5 (PP —6R)+——2A_,  afi
of +d PP +eP, fiB +gh (53)
+ (b —0-ax’) B+ oy B + B AR +NBB + L AR +E R =0,
" " P P
3P + by (PP 6P ) ¢ — P22, Bl
ob +d,B R +tei  LHP +ghR (54)

+ (K" — 0= @) B+ 0P + B, RR PR + LR+ 6B =0,
and the imaginary parts are given by (14) and (15) and in this case, (16) and (17) are also satisfied. By virtue of
(16) and (17), Egs. (53) and (54) can be written as
(3(1121( —15abx> + b (v + 205,%°) [ P . __anR
~4b R +dRB +eB SR 4P (55)
+ (o' —0-ax’) B+ R +BRA AP +LRA +ER =0,

[3a§1< - 15a2b21<2 + by (v +205,) ) o »P +_ @P
—4bx PP+ d21’22P2 +e,P' P+ g, P (56)
+ (b - 0-a, ) B+ 0,5 + BB + BB + (PR + &P =0.
Next, setting

P, = AR, (57)
where A #0 and A # 1 then, (55) and (56) become
3a7k — 15ab > + b (v +205,K°) ) 3 10 n 4 2
AR+ > et 2 | A
—4bx o +dN +el i+ gh (58)
—(@+ (a - 5K) B + (0 + BA°) B + (MY + A2 + &) B =0,
3a2K — 15a,b,K° + by (v + 206,%°) ) 13 e P 0 )
AR +— T A
a, —4bx N +dA +e, AN+ g (59)

- ((’3"' K’ (a, - sz)) P,4 + (azkz + Bz)P16 + (Cz + 1127»2 + &27"4)})18 =0.

For extracting closed form solutions, the following transformation is applied to Egs. (58) and (59):
1
P =U" (60)

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS  Vol.65 No.12 2020
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Then Egs. (58) and (59) change to

(3(1121( —15ab5 + b, (v + 201)118))(2[](].. _wy)+ ) +( 4 j U

4(a; — 4b) o +dA +elt S+ g\ (61)
- (00+ K (a - blK))U2 + (OLI + lez)lﬂ + (CIN¥ +mA’ + &1)U4 =0,
2 2 3
(3a2K—15a2b2K + b, (v + 20b,x )](2UU" e P +( 2 )U
4(a, — 4b,K) ol +dA +e, \HAN +g (62)

—(0+€ (g, = 51)) U + (0 A* +B,)U° + (L + A + EA)U* = 0.

Equations (61) and (62) have the same form underthe So Eq. (61) will now be examined, in the next subsec-
constraint conditions given by tion, in order to secure cubic—quartic solitons to the

5 5 3 governing equation considering the conditions (63).
(a, — 4b0) 32k — 15a,6,%" + b, (v + 20b,°))
2.2.1. Extended trial function. Balance of the terms

2 2 3
= (a, — 4b,%) (3a’k — 15ab" + b, (v + 205,)), UU" or (U")? with U* appeared in (61) gives rise to
4 2 _ 2 4
Pl(Czk +d27"2+ez)—P2(Cl+dl7\'2 +eA >, G=p+2c+2. (64)
@A + &) = g (fi + &), (63)
Forp=0,¢=1landoc =4,
al - blK = a2 - sz,
(Xl + 317\42 = (XZ}\? + Bz, U = QO + IQIW' (65)
CA Y+ +E = + A+ EAN Inserting (65) into (61) gives
Mo = Mo, W =My Ny = My,
Xo =%Xo» Q=00 @ =0, ¢ =0,
L 4‘5263912%0 _ Uy (30€1 + 3617V2 + 85290) 66
- H “3 - 5 ( )
3y 2e,0,
(3,07 (0 + BA” + 2€,0,) +2 } — 26,1000 ) — 6
T €4 M40 \Oy + 5y €% €110001 — 26100 D14
2 2 >
2€,€40001
= 3pibt + € (Ba0) (0 (04 + BA +2600)) — 4’ + bc*) + ,€507)
354“495

where
E] = 361]2 - 15alblK + 20b12K2, €2 = C17\44 + nl}\‘z + &1, 63 = al - 4blK,

(67)
€ =¢+t dlx2 + ‘317V4, €5 = Uoor — Wi0-

Then, (26) shapes up

(s — _ h d\lf =9 d\lf ) 68
(=) \/;j\/ W3 Moo W o 2IJ®(W) ©%

v Ry 2y + Bl 4
4 Ly Ly My
Integrating the last equation, one recovers the following exact solutions to the model:

For ©(y) = (v — 8))*, g, = —9,0, and s, = 0, plane wave solutions are:
) V2
X+ {2‘(‘51“4 + 4‘5263912X0}t
3bi,
X exp {i {—Kx n {31711&4 + € (3H4Q§ (Qo (051 + Blkz + iz@o) - 01K3 + b1K4) + 52'55913)], " GH ,
3e4140

u(x,t) = |x

(69)
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CUBIC—QUARTIC OPTICAL SOLITONS WITH DIFFERENTIAL GROUP DELAY 1391

12
v(x,) =\ |+ 0%, -
X+ {2‘('51144 + 46,650 Xo}t
3b, (70)
X exp {i {—Kx n [3171“4 t+ €, (3H4Q§ (Qo ((11 + B?lv + 52290) - a1K3 + b1K4) + e2€5Q13 )jt n (_)H
€440
IfOy) = (y —8,)°(v — §,), 8, > 8, 9, = —0,6, and s, = 0, rational function solution is:
2 /2
u(x,f) = 40% (8, - 8,) - -
2 _ 3Ke iy + 4€r€30 Yo
R O e 0] m
X exp {i {—Kx + (3P1H4 t € (311493 (Qo ((11 + B317b2 + iz@o) - 01K3 + b1K4) + 6265913 )jt + GH ,
€41409
2 1/2
v(x,t) = A 4010, (8, —8) 5 5
2 _ _ 3K, + 46,630 X0
R G e e ] ™
X exp [i {—Kx n (3P1M4 +€ (3114@(? (Qo (051 + Bf‘z + 622Q0) - alK3 + b1K4) + €2€5913 )jt n 9}}
€41400
However, when O(y) = (¢ — 8,)%(y — 8,)?, 0, = —0,8, and s, = 0, cubic—quartic singular solitons are:
1/2
u(x, 1) = {01 (8, = 81)(1 T coth [81 -9, (x " {3‘(‘51“4 + 462539127(0},]})}
2 20, 2bp, (73)
X exp {i {—Kx + (31’1“4 + &, (3140, (0 (0, + B317V2 + iz@o) —a +bx*) + €50 J; + GH
€41400
v(x,1) = {Q] (822 3, )(1 T coth |:812:382 [x n {31{61“4 2+b4€2€301 Xo} JD}
2 127 (74)
X exp {i {—K:x n (3191“4 + € (3H4Q§ (Qo ((Xl + B317V2 + 52290) - alK3 + b ) + €,€50; )JI n 9}}
€41400
Whenever O(y) = (¢ — 8,)*(y — 8,) (¥ — 85), 8, > 8, > 85, 9, = —0,0, and s, = 0, cubic—quartic bright soliton is:
12
u(x,t) = 923 J >
o Ke kg + 4€,€30 Yo
% 5 + cosh [%4 (x + { o, }tﬂ 75)
X eXp {i {—Kx [3171“4 T € (3H4Qo (Qo (al + l-)’317L + e200) alK3 + b1K4) + 5265013)} n GH’
’54“490
/2
v(x,t) = A 913)3 J 5
F, + cosh| 9, x + |3cbs + deres0 X}tﬂ
’ { ! ( { by (76)
X exp {i {—K:x " (3171“4 + € (3}14@3 (Qo (OCI + Bf‘z + 52290) - alK3 + b1K4) + €2€5Q13)jt " GH ’
€41400
where
@3 — 20,(6, gsz)é& - 83)’ (77)
3 — 0,
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F, 25 -85,
83_62

%4 — \/(81 — 82)(81 — 63) (79)
%,

: (78)

Here, the soliton amplitude and its inverse width are respectively indicated by %, and #,. The condition g, <0
is necessary in order for the solitons obtained to exist.

Finally, if @(y) = (y — 8,)(y — &,) (W — 8;)(y — J,), &, > 8, > 8; > d,, 9, = —0,0, and s, = 0, JEF solutions are:

1/2
U(x, t) = 3@4 4 2
F . +sn’ {% -(x +{ Ke Ly + 4€,€30, XO}IJ,k}
) ’ 3By (80)
X exp {i {—K:x " (3%“4 + € (3P~4Q§ (Qo (al + 517“2 + iz@o) —ax + b1K4) + ezesgﬁ)}t " 9}} ’
3e4400
1/2
v(x,t) = A D4 >
F,+sn’ {%j {x + {31{61“4 T 46,0 XO}tJ,k}
3bu, (81)
X exp {i {—Kx " [31’1H4 t € (3lvl4902 (Qo (0‘1 + 617\'2 + iz@o) - 01K3 + b1K4) + e265013 )jt " GH’
3e411400
where
k = (62 - 63)(61 — 54)’ (82)
(8, — 8:)(8, — d,)
P, = a(d — 8,8, - 62)’ (83)
61 - 84
d,-0
F,=0"% 84
+=% 25, (84)
_1y _ _
9, = CONG =B8)G =8 g ;5 (85)
20,
Remark 3. For k£ — 1, from (80) and (81), cubic—quartic singular optical solitons are constructed as
1/2
u(x, t) = gb:; 4 2
F . 4+ tanh| 9 | x + 12KEHa + 46630 Xo}tﬂ
L [ / [x { 3, (86)
X exp {i {—Kx n (3]71“4 t+ € (3H4Q§ (Qo (al + [317‘2 + '522Q0) - 01K3 + b1K4) + eﬁs@f)jt n 9}} ’
3e4140
1/2
v(x,t) = A @34 J 5
T 2 K€My + 4€,€30 Yo
%, + tanh [%j (x + { T }tﬂ &)
X eXp {i {_m + [3171“4 +€ (3P~4Q§ (Qo (‘11 + Bllz + 52200) - alK3 + b1K4) + '5255@13)} + GH ’
3€41400

where 8; = 9,.
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Remark 4. If £k — 0, in this case, periodic singular solutions are

/2
u(x,t) = D4 5
o ot [ [ ] |

3b, (88)

X exp {i {—Kx n [3P1H4 + € (3M4Q§ (Qo ((11 + [517L2 + 52290) - a1K3 + b1K4) + 62’55913)} n (_)H ,

3e4L40)
1/2
v(x,t) = A D4 5
P Y R T

- 3bu, (89)

X exp {i {_m " [3171“4 t € (3P~4Q§ (Qo (Ocl + Blkz + 52200) - alK3 + b1K4) + '5255@13)} " GH ’

3€41400
where 0, = 9;.
2.3. Case 3: (n=23)
Upon inserting (8) and (9) into (6) and (7), the real part equations are
saxp +b(RO—6R )+ —— 2R it
aB +dR'B +eR'B + B R+ PP + W) (90)
+ (b —0-a’) R+ RR + B +BREVE + B+ N\ BB + (R P +0,RP + &P =0,
3azKP2"+b2(P2(4)—6K2P2")+ - - szz — st Z‘bPz - -

P + PR+ P R+ AR P+ B (g, + bR o1)

+ (byx* — 0= ay<C) B+ 0, BB + B+ BB + B+ M,P B + (PR +0,RP° + &P =0,

and the imaginary parts are given by (14) and (15) and in this case, (16) and (17) are also satisfied. By the help
of (16) and (17), Egs. (90) and (91) modify to

[342121( —15a5> + b (v + 20b11<3)j Pt A N @R
4 — 4bx aP'+d PP +e PP+ [P P+ P (g P+ hPE)  (92)
+ (b —0-a ) B+ BB + B +BRPPR + B+ BB + (BB + O,RP +ER =0,
(3(1221( —15a,6,k> + b, (v + 20b,° )J Py »P N 9P,
a, — 4byx P + BB + e R+ LB P+ B (g,P + mBY)  (93)
+(bx* —0-a, ) B+ BB + B+ BBRENE + B + BB + (B P +0,BR° + &P =0.
Next, setting

P, =\P, (94)
where A # 0 and A # 1, then (92) and (93) become
(3a51< —15ab> + b, (v + 20b11<3)] Pip s p1 L aR
a, — 4 g  redt + A8 n (g + m)2) (95)
—(0+ (g = 5%) P® + 1y (o + BA7) B + (A +mA2 +0A° + &) B =0,
(3(1221( —15a,b,K" + by (v + 206, )j Pip L » i
a, — 4K e ) e+ Mg+ ) (96)

—(0+ € (@, = 5,%)) P + X, (0,7 +B,) B+ (GA2 + A +6, +EA°) B =0,
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where A, = V1 + A>. For recovering closed form solutions, the transformation

1

R=U, 97)
is applied to Egs. (95) and (96). Thus Egs. (95) and (96) change to

2 2 3
[3(11 Kk —15ab> + b (v + 20b,% )j(3UU" )+ _n . qU 2
Na, — 4bx) o +dM +erlt + A0 A (g + A0 (98)
2 2 3
(3(121( —15a,b,K> + by (v + 20b,% )j (300" —20°Y) + — n_____, ngf
9a, — 4b,K) A +dA +el + f A (g +hy) (99)

—(0+€ (@, = 5,)))U* + 1, (A2 +B,) U + (LA + At + 0, +EA°)U* = 0.

Equations (98) and (99) have the same form under the constraints

(a, — 4b0) 32k — 15a,6,%7 + b, (v + 20b,K°)) = (a, — 4b,%) (3a’k — 15a,5¢> + b, (v + 205%°)),
p] (627\46 + dz}\/4 + 327\«2 + f‘2) = p2 (Cl + d17\«2 + 317\44 + fi?\‘()),
q (827\'2 + hz) =q, (gl + hllz) (100)
al - blK = a2 - sz,
o + lez = 0‘27L2 +B,,
CA AT + 0% + & = LA+ At + 0, + 600

Therefore Eq. (98) will now be investigated, in the following subsection, in order procuring cubic—quartic
solitons to the considered model under the conditions (100).

2.3.1. Extended trial function. Balance of the terms UU" or (U")? with U* in (98) implies

c=p+2c+2. (101)

Forp=0,¢c=1andc =4,
U =0 +ay. (102)

Plugging (102) into (98) leads to

Ho = Mg, Ky =Ly, Hyg = Uy,
XO =X07 9 = 9%, O =0,
—_& (40g,1140) + €5 (56, (Sia0) — 10007 + 1o0r') + 16€Ghtagy))

h 10esh ’
v = _Axey + 9€,€:01 %o T 4, (2€6M, + Se50,) ’ (103)
4by, 5€,0,
W = 2esM10y (5€2H2Q12 — 41400 (3663}"1 + 56,0 )) - 40q,14 ’
Ses€5M01
W = 2u, (101(3 (bix — @) + 30, (4eeh, + 56290)) - 562“2@12 ’
2004

where
€, = 3a} —15abx + 2067,
& =AM+ A’ + OA° + &
€ =a —4bK, €, =c +dN +eAdt+ f)°,

€5 = gl + h17\,2, €6 = OC] + Blkz.

(104)
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Employing these results, one can be rewritten (26) as

_ [Xo dy _ dy
+(s — 5p) = [0 _ﬂ3j—. (105)
s \/w4+“3w Pl o NER)

4 My My Ly

As a results, the solutions for the governing model are listed as follows:

For O(y) = (¥ — §,)%, 0, = —0,0, and s, = 0, plane wave solutions are:

1/3
u(x,t) = |t 0% 5
X+ {4‘(61“4 + 9€,€30, Xo}t
4b, (106)
X exp {i {—Kx " (2M4 (101(3 (bx —a) + 30, (4, + 55290)) - 5€2H2Q1zjt " 9}}’
2004
/3
vix,t) =\ |* o0 >
+ {4‘{61“4 + 96,630 Xo}t
4h, (107)
X exp {i {—Kx " [2M4 (10K3 (b —a) + 30, (4eh + 562@0)) - 56%95} " GH
2004
IfOW) = (v —8)* (v —39,), 6, > d,, g, = —0,6, and s, = 0, rational function solution is:
2 1/3
u(x,t) = 40105 (462 -9) ; - .
49 — {(5 -8 )(x +{ K€y + 96,630, Xo}tﬂ
3 1~ 0, aby1, (108)
X exp {,. {_Kx s (2u4 (10K° (i — @) + 30y (4egh, + Ser0,)) = Sezuzgfjt . GH
2004
4002(5, — ) ”
v(x,1) = A ! 342 ! ; - >
2 Kel, + 9€,650 )
4'&3 - |:(81 - 82)()(«' +{ 1 44blu42 3E1 0}f]:| (109)
X exp {,. {_Kx .\ [2u4 (10K° (i — @) + 30y (4egh, + Ser00)) — SeQuzgfjt s QH
204
However, when ©(y) = (¥ — 8,)*(y — 3,)2, 0, = —0,0, and s, = 0, cubic—quartic singular solitons are:
1/3
u(x, ) = {Q] (8, - 61)(1 T coth {81 -9, [x n {4‘{61“4 + 962’539127(0}1‘)}}
X exp {1’ {—Kx " (2114 (10K3 (b — @) + 30, (4eh + 5€200)) - 552“2012} " BH’
20,
(5, -8, 5, - dice,fl, + 96,630 v
o [POB af5=5 fsesin )
2 205 4by (111)
X exp {i {—Kx + (2P~4 (10K3 (bk—a)+ 3%)0(4667"1 + 56,0 )) - 5€2H2912j, " 9}}
Ly
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Whenever ©O(y) = (¢ — 8,)* (Y — 8,) (¥ — §5), 8, > &, > 85, g, = —0,0, and s, = 0, cubic—quartic bright soliton is:

1/3
u(x,t) = Ds >
F ; + cosh {%7 (x 4 {4K€1H4 +9€,€30, Xo}tﬂ
4by

X exp {i {—Kx " (2114 (1 0x’ (K — @) + 30, (4eh + 56,50, )) - 5€2H2912Jt " GH ,

200,
@ 1/3
v(x,t) = A 2 5
% 5+ cosh {%7 (x + {41{6'“4 + 9660 XO}IH
4biL,

X exp {i {—K‘x " (2H4 (10K3 (bxk—a)+ 3&;00(4667‘1 + 56200)) - 562“2912} " GH’

Ly

where

b

G = 2018, = 8,)(8, — 8y)

8, -3,

g _28,-8 -3
o8-8,
9, = VG =8)(® - 3;)

0,

(112)

(113)

(114)

(115)

(116)

Here, %5 and ¥, stand for the amplitude of soliton and its inverse width respectively. The condition g, < 0 is

necessary in order for the solitons to exist.

Finally, if O(y) = (W — 8,) (W — 3,)(¥ — &3) (W — 8,), &, >, > 8; > 84, 9, = —0,0, and 5, = 0, JEF solutions are:

1/3
u(x,t) = D >
F +sn’ {% (x + {4](61].,[4 + 9€,€50; XO}tJ k}
! 4by

X exp {,. {_Kx s (2;14 (10K° (i — @) + 30y (4egh, + Ser01)) = Sezuzef} s OH

2004
1/3
v(x,1) = A D >
P Py RN CTIECERA N
! 4bily

X exp {i {—Kx " (2H4 (101(3 (bx—a)+ 3&;00(4€67\‘1 + 56,0 )) - 562“2912} i GH ;

Ly

where

k = (82 - 63)(61 — 64)
(8, — 8:)(8, — d,)
P = a8 —8,)(8, — 82)’
8] - 84
— 64 - 82
J
%, = CONG =8)@, =8 ¢ ;g

F
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Remark 5. When k — 1, from (117) and (118), cubic—quartic singular optical solitons are obtained as
/3
u(x,t) = D .
Fo+ tanh’ 9| x+ 4Ke |y + 9€,€30 X0 ¢
Aby (123)
2004
1/3
v(x,t) =\ D .
9;6 + tal’lh2 %j X+ 4K€1M4 + 9626301 Xo ¢
Abiy (124)
X exp i< —Kx + 2“’4 (10K3 (blK - al) + 3@0 (4667\’1 + 562@0)) — 562“’2@12 f e ’
2004
where 8; = 9.
Remark 6. For £k — 0, in this case, periodic singular solutions are
/3
u(x,t) = D .
T+ sin?| % | x + 4Ke ly + 9€,€30 Xo t
' 4by, (125)
e {i {_KX ’ (2H4 (10K3 (B = a) + 30, (4ech, + Sez00 )) - 562“2@12J’ + OH,
2004
1/3
v(x,H) =\ D .
F  +sin’ ¥l x+ 4xell, + 9€,€30 %0 ;
4by (126)

X exp {i {—Kx + (2M4 (10K3 (bx—a) + 30, (4€6h, + 55290)) - 562“«2912

where 0, = 9;.

3. CONCLUSIONS

Today’s paper successfully retrieved bright and sin-
gular CQ optical solitons to a brand new model. It is
with Kudryashov’s law of refractive index and that too
with polarization mode dispersion. The rich and
famous extended trial function approach made these
solitons retrieval possible. The results were recovered
for three integer values of the power law parameter 7.
One limitation of this approach is noticeably clear.
The algorithm fails to recover dark soliton solutions.
Nevertheless, the spectrum of soliton solutions thus
recovered has yielded an abundance of opportunity to
proceed further along in a variety of other avenues. An
immediate thought is to recover the conservation laws
for the model. One additional extension is to locate the
governing model with DWDM topology and retrieve
its soliton solutions along with the conservation laws.
Yet another avenue is to study the model with frac-
tional temporal evolution that has been successfully
applied to complex Ginzburg—Landau equation [8].
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Such studies are all under way and the results will be
disseminated with time.
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