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Abstract
The present paper focuses on the chirped soliton solutions of the Fokas–Lenells
equation in the presence of perturbation terms. A complex envelope traveling-wave
solution is used to reduce the governing equation to an ordinary differential equation
(ODE). An auxiliary equation in the form of a first-order nonlinear ODE with six-degree
terms is implemented as a solution method. Various types of chirped soliton solutions
including bright, dark, kink and singular solitons are extracted. The associated chirp is
also determined for each of these optical pulses. Restrictions for the validity of
chirped soliton solutions are presented.

Keywords: Chirped solitons; Fokas–Lenells equation with full nonlinearity; Auxiliary
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1 Introduction
The soliton, which is one of the ubiquitous natural phenomena in daily life, has attracted
much more attention due to its significant role in the physical and industrial applications
like optical fibers [1], optical metamaterials [2, 3] and many others. Understanding the
dynamics of soliton can lead to an extensive improvement in technology and industry.
Therefore, a lot of intensive studies are devoted to the family of nonlinear Schrödinger
(NLS) equation as it is the governing equation that describes the soliton propagation in
many branches of science, e.g. nonlinear optics. Various powerful tools are developed to
analyze the NLS models and to calculate their exact solutions. Such techniques include the
extended trial function method [4], a modified simple equation method [5], the tanh–coth
method [6, 7], the projective Riccati equations method [8], a new generalized exponential
rational function method [9, 10], the Lie group method [11, 12], the Weierstrass elliptic
function method [13], a new mapping method and a new auxiliary equation method [14].

The investigation of soliton pulse solutions with nonlinear chirping has become a fasci-
nating research topic. The reason is that the chirped pulses can be valuable in many tech-
nical applications such as the design of fiber-optic amplifiers, optical pulse compressors
and solitary wave-based communications links. Furthermore, the chirp is used in spread
spectrum communications and some devices, e.g. sonar and radar. There are various stud-
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ies that have been carried out to retrieve the chirped soliton solutions for different forms
of NLS models in the presence of some effects like perturbations, the Kerr law or non-Kerr
law nonlinearities and others. For more details, the reader is referred to Refs. [15–20].

Recently, many generalizations of the NLS equation were introduced depending on the
physical situation. One interesting example is the Fokas–Lenells (FL) equation that ap-
pears in the area of nonlinear optical fibres. Since its first appearance nearly a decade
ago [21], the model of the FL equation has been studied by some authors in the present
time to obtain exact soliton solutions using several types of integration schemes. Among
these approaches are the complex envelope function ansatz [22], the trial equation method
[23], the extended trial function method [24], and the modified simple equation method
[25]. Also we mention the three methods of the modified Kudryashov’s method, the
exp(–ψ(η))-expansion method, and the sine-Gordon expansion method [26]. Finally, we
have the semi-inverse variational principle [27], the Riccati equation method [28], the gen-
eralized exponential function method [29], the mapping method [30], the modified ex-
tended direct algebraic method [31], and the Laplace–Adomian decomposition method
[32].

This paper sheds light on the chirped soliton solutions of the FL equation. Perturbation
terms of Hamiltonian type are present in the model with full nonlinearity. Thus, the FL
equation proposed in this study takes the form

iqt + a1qxx + a2qxt + |q|2(bq + iσqx) = i
{
αqx + λ

(|q|2nq
)

x + μ
(|q|2n)

xq
}

, (1)

where the dependent variable q(x, t) is a complex-valued function that denotes the soliton
profile while the independent variables x and t indicate spatial and temporal variables.
The first term in Eq. (1) stands for the temporal evolution. The terms a1 and a2 represent
the coefficients of group velocity dispersion and spatio-temporal dispersion respectively.
Then the fourth term accounts for the cubic nonlinearity and the fifth term refers to the
nonlinear dispersion. The perturbation terms α, λ and μ on the right-hand side of Eq. (1)
represent inter-modal dispersion, self-steepening effect, and nonlinear dispersion, respec-
tively.

The authors in [23] investigated the chirped soliton solutions of the FL equation (1)
in the absence of perturbation terms (i.e., α = λ = μ = 0) whereas the studies in [24–32]
were devoted to the chirp-free soliton solutions of Eq. (1). The present study concentrates
thoroughly on the chirped optical solitons of Eq. (1) in the emergence of perturbation
terms. The corresponding chirp is also retrieved for each of the optical pulses.

Now, we aim to deal with the model (1) via obtaining the traveling wave reduction. The
paper is organized as follows. In the next section, we analyze the complex structure of
Eq. (1) using the traveling wave hypothesis. In Sect. 3, the auxiliary equation method of two
forms is applied to derive the chirped soliton solutions. Section 4 contains the graphical
representations of some obtained soliton solutions. Our discussion and conclusion are
presented in Sect. 5.

2 Mathematical analysis
To tackle the complex structure of Eq. (1), we use the traveling wave hypothesis of the
form

q(x, t) = u(ξ )ei(φ(ξ )–Ωt), (2)
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where u(ξ ) and φ(ξ ) are real functions of the traveling coordinate ξ = x – νt. Here, ν is the
group velocity while Ω is the frequency of the wave oscillation. The corresponding chirp
is introduced by δω(x, t) = – ∂

∂x [φ(ξ ) – Ωt] = –φ′(ξ ).
Substituting the transformation (2) into Eq. (1), we obtain a system of equations for real

and imaginary parts given as

– (α + ν + a2Ω)u′ + 2(a1 – a2ν)u′φ′ + (a1 – a2ν)uφ′′

+ σu2u′ –
(
(2n + 1)λ + 2nμ

)
u2nu′ = 0, (3)

(α + ν + a2Ω)uφ′ + Ωu + (a1 – a2ν)u′′ – (a1 – a2ν)uφ′2

+ bu3 – σu3φ′ + λu2n+1φ′ = 0, (4)

where a prime denotes the derivative with respect to ξ . Equation (3) can be integrated
after multiplying on u to induce

φ′ =
α + ν + a2Ω

2(a1 – a2ν)
–

σu2

4(a1 – a2ν)
+

((2n + 1)λ + 2nμ)u2n

(a1 – a2ν)(2n + 2)
, (5)

where the integration constant is taken to be zero. To ensure a closed form solution for
the proposed model, we set n = 1. Thus, Eq. (5) reduces to

φ′ =
(α + ν + a2Ω)

2(a1 – a2ν)
+

(3λ + 2μ – σ )u2

4(a1 – a2ν)
. (6)

Accordingly, the resultant chirp can be addressed as

δω(x, t) = –
(α + ν + a2Ω)

2(a1 – a2ν)
–

(3λ + 2μ – σ )u2

4(a1 – a2ν)
. (7)

Now, substituting Eq. (6) into Eq. (4) leads to

u′′ +
c2

4
u +

c4

2
u3 +

c6

16
u5 = 0, (8)

where

c2 =
(α + ν + a2Ω)2 + 4Ω(a1 – a2ν)

(a1 – a2ν)2 , (9)

c4 =
(λ – σ )(α + ν + a2Ω) + 2b(a1 – a2ν)

(a1 – a2ν)2 , (10)

c6 =
(3λ + 2μ – σ )(λ – 2μ – 3σ )

(a1 – a2ν)2 . (11)

Multiplying both sides of Eq. (8) by u′ and integrating with respect to ξ , yields

u′2 + 2c0 +
c2

4
u2 +

c4

4
u4 +

c6

48
u6 = 0, (12)

where c0 is the constant of integration.
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It is worth to mention that Eq. (12) can be written in the integral form

±(ξ – ξ0) =
∫ 1

√
–(2c0 + c2

4 u2 + c4
4 u4 + c6

48 u6)
du. (13)

Taking the constant of integration to be zero, i.e. c0 = 0, Eq. (13) is reduced to the following
form:

±(ξ – ξ0) =
∫ 1

u
√

–( c2
4 + c4

4 u2 + c6
48 u4)

du. (14)

According to Yomba [33], one can obtain different types of soliton solutions including
bright, dark, and singular solitons.

3 Chirped soliton solutions
In this section, we demonstrate the exact analytic chirped soliton solutions of Eq. (1) with
the existing conditions. Equation (12) can be written in the structure of a first-order non-
linear ODE of the form

u′2 = l0 + l2u2 + l4u4 + l6u6 = 0, (15)

or

u′2 = r0 + r2u2 +
1
2

r4u4 +
1
3

r6u6 = 0, (16)

where li and ri (i = 0, 2, 4, 6) are constants to be determined. It is well known that Eqs. (15)
and (16) admit various types of solutions. Equation (15) has solutions in the form

u(ξ ) =
1
2

[
–

l4

l6

(
1 ± f (ξ )

)]
1
2

, (17)

where the function f (ξ ) can be expressed through the Jacobi elliptic functions [34] while
Eq. (16) has a variety of solutions in terms of trigonometric and hyperbolic functions [35].

In what follows, the solutions of Eq. (12) will be extracted and then substituted into
the relations (2) and (7) to display different forms of chirped soliton solutions and their
associated chirping to Eq. (1). Comparing the coefficients of uj (j = 0, 2, 4, 6) in Eqs. (15)
and (16) as given in [34, 35] to their corresponding in Eq. (12), the following cases of values
for the constants ci (i = 0, 2, 4, 6) will be derived.

Case I. If c0 = 9c3
4(m2–1)

16c2
6m2 , c2 = 3c2

4(5m2–1)
4c6m2 , then one can find the Jacobi elliptic function so-

lutions of Eq. (1) as

q(x, t) =

√√√√–
3c4

c6

(
1 ± sn

(
–

c4

2m

√

–
3
c6

ξ

))
ei(φ(ξ )–Ωt), (18)

q(x, t) =

√√√√–
3c4

c6

(
1 ± 1

m
ns

(
–

c4

2m

√

–
3
c6

ξ

))
ei(φ(ξ )–Ωt), (19)
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where c4 > 0, c6 < 0 and 0 < m < 1 is the modulus of the Jacobi elliptic functions. As m → 1,
solution (18) reduces to the following chirped kink and anti-kink soliton solutions:

q(x, t) =

√√√√–
3c4

c6

(
1 ± tanh

(
–

c4

2

√

–
3
c6

ξ

))
ei(φ(ξ )–Ωt), (20)

and solution (19) degenerates to a chirped singular soliton solutions in the form

q(x, t) =

√√√√–
3c4

c6

(
1 ± coth

(
–

c4

2

√

–
3
c6

ξ

))
ei(φ(ξ )–Ωt). (21)

The corresponding chirping are expressed, respectively, by

δω(x, t) = –
(α + ν + a2Ω)

2(a1 – a2ν)
+

3c4(3λ + 2μ – σ )
4c6(a1 – a2ν)

[
1 ± tanh

(
–

c4

2

√

–
3
c6

ξ

)]
, (22)

δω(x, t) = –
(α + ν + a2Ω)

2(a1 – a2ν)
+

3c4(3λ + 2μ – σ )
4c6(a1 – a2ν)

[
1 ± coth

(
–

c4

2

√

–
3
c6

ξ

)]
. (23)

Case II. If c0 = 9c3
4

16c2
6m2 , c2 = 3c2

4(4m2+1)
4c6m2 , then this results in the Jacobi elliptic function solu-

tions of Eq. (1) as

q(x, t) =

√√√√–
3c4

c6

(
1 ± cn

(
c4

2m

√
3
c6

ξ

))
ei(φ(ξ )–Ωt), (24)

where c4 < 0, c6 > 0. As m → 1, solution (24) reduces to the following chirped bright soliton
solutions:

q(x, t) =

√√√√–
3c4

c6

(
1 ± sech

(
c4

2

√
3
c6

ξ

))
ei(φ(ξ )–Ωt), (25)

and the chirp is given by

δω(x, t) = –
(α + ν + a2Ω)

2(a1 – a2ν)
+

3c4(3λ + 2μ – σ )
4c6(a1 – a2ν)

[
1 ± sech

(
c4

2

√
3
c6

ξ

)]
. (26)

Case III. If c0 = c3
4

3c2
6

, c2 = 3c2
4

c6
, then this gives rise to the chirped dark soliton solution of

Eq. (1) as

q(x, t) = 2

√√√√√√√√
–

2c4 tanh2( ε
2

√

– c2
4

c6
ξ )

c6(3 + tanh2( ε
2

√

– c2
4

c6
ξ ))

ei(φ(ξ )–Ωt), (27)



Al-Ghafri et al. Advances in Difference Equations        (2020) 2020:191 Page 6 of 12

and the chirped bright soliton solution of the form

q(x, t) = 2

√√√√√√√√
–

2c4 coth2( ε
2

√

– c2
4

c6
ξ )

c6(3 + coth2( ε
2

√

– c2
4

c6
ξ ))

ei(φ(ξ )–Ωt), (28)

where c4 > 0, c6 < 0. The corresponding chirpings are given, respectively, by

δω(x, t) = –
(α + ν + a2Ω)

2(a1 – a2ν)
+

2c4(3λ + 2μ – σ ) tanh2( ε
2

√

– c2
4

c6
ξ )

c6(a1 – a2ν)(3 + tanh2( ε
2

√

– c2
4

c6
ξ ))

, (29)

δω(x, t) = –
(α + ν + a2Ω)

2(a1 – a2ν)
+

2c4(3λ + 2μ – σ ) coth2( ε
2

√

– c2
4

c6
ξ )

c6(a1 – a2ν)(3 + coth2( ε
2

√

– c2
4

c6
ξ ))

. (30)

Case IV. If c0 = 0, c2 = 3c2
4

c6
, then one can reach the chirped kink soliton solution of the

form

q(x, t) =

√√√√–
3c4

c6

(
1 + tanh

(
ε

2

√

–
3c2

4
c6

ξ

))
ei(φ(ξ )–Ωt), (31)

and the chirped singular soliton solution

q(x, t) =

√√√√–
3c4

c6

(
1 + coth

(
ε

2

√

–
3c2

4
c6

ξ

))
ei(φ(ξ )–Ωt), (32)

where c4 > 0, c6 < 0. The corresponding chirping are given, respectively, by

δω(x, t) = –
(α + ν + a2Ω)

2(a1 – a2ν)
+

3c4(3λ + 2μ – σ )(1 + tanh( ε
2

√

– 3c2
4

c6
ξ ))

4c6(a1 – a2ν)
, (33)

δω(x, t) = –
(α + ν + a2Ω)

2(a1 – a2ν)
+

3c4(3λ + 2μ – σ )(1 + coth( ε
2

√

– 3c2
4

c6
ξ ))

4c6(a1 – a2ν)
. (34)

Case V. If c0 = 0, then this leads to the chirped soliton solutions of Eq. (1) as

q(x, t) = 2

√√√√–
3c2c4 sech2(

√–c2
2 ξ )

12c2
4 – c2c6(1 + ε tanh(

√–c2
2 ξ ))2

ei(φ(ξ )–Ωt), (35)

q(x, t) = 2

√√√√ 3c2c4 csch2(
√–c2

2 ξ )

12c2
4 – c2c6(1 + ε coth(

√–c2
2 ξ ))2

ei(φ(ξ )–Ωt), (36)
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q(x, t) =

√√√√–
3c2 sech2(

√–c2
2 ξ )

3c4 – ε
√

3c2c6 tanh(
√–c2

2 ξ )
ei(φ(ξ )–Ωt), (37)

q(x, t) =

√√√√ 3c2 csch2(
√–c2

2 ξ )

3c4 – ε
√

3c2c6 coth(
√–c2

2 ξ )
ei(φ(ξ )–Ωt), (38)

where c6 < 0 in solutions (37) and (38).

q(x, t) =

√√√√–
6c2 sech2( ε

√–c2
2 ξ )

4
√

M – (2
√

M – 3c4) sech2( ε
√–c2

2 ξ )
ei(φ(ξ )–Ωt), (39)

q(x, t) =

√√√√–
6c2 csch2( ε

√–c2
2 ξ )

4
√

M + (2
√

M + 3c4) csch2( ε
√–c2

2 ξ )
ei(φ(ξ )–Ωt), (40)

q(x, t) =

√

–
6c2

2ε
√

M cosh(√–c2ξ ) + 3c4
ei(φ(ξ )–Ωt), (41)

where M > 0.

q(x, t) =

√

–
6c2

2ε
√

–M sinh(√–c2ξ ) + 3c4
ei(φ(ξ )–Ωt), (42)

where M < 0. Solutions (39) and (41) represent bright solitons while solutions (40) and
(42) are singular solitons. In this case, M = 3

4 (3c2
4 – c2c6), ε = ±1 and c2 < 0. The associated

chirp can be written, respectively, as

δω(x, t) = –
(α + ν + a2Ω)

2(a1 – a2ν)
+

3c2c4(3λ + 2μ – σ ) sech2(
√–c2

2 ξ )

(a1 – a2ν)[12c2
4 – c2c6(1 + ε tanh(

√–c2
2 ξ ))2]

, (43)

δω(x, t) = –
(α + ν + a2Ω)

2(a1 – a2ν)
–

3c2c4(3λ + 2μ – σ ) csch2(
√–c2

2 ξ )

(a1 – a2ν)[12c2
4 – c2c6(1 + ε coth(

√–c2
2 ξ ))2]

, (44)

δω(x, t) = –
(α + ν + a2Ω)

2(a1 – a2ν)
+

3c2(3λ + 2μ – σ ) sech2(
√–c2

2 ξ )

4(a1 – a2ν)[3c4 – ε
√

3c2c6 tanh(
√–c2

2 ξ )]
, (45)

δω(x, t) = –
(α + ν + a2Ω)

2(a1 – a2ν)
–

3c2(3λ + 2μ – σ ) csch2(
√–c2

2 ξ )

4(a1 – a2ν)[3c4 – ε
√

3c2c6 coth(
√–c2

2 ξ )]
, (46)

δω(x, t) = –
(α + ν + a2Ω)

2(a1 – a2ν)
+

3c2(3λ + 2μ – σ ) sech2( ε
√–c2

2 ξ )

2(a1 – a2ν)[4
√

M – (2
√

M – 3c4) sech2( ε
√–c2

2 ξ )]
, (47)

δω(x, t) = –
(α + ν + a2Ω)

2(a1 – a2ν)
+

3c2(3λ + 2μ – σ ) csch2( ε
√–c2

2 ξ )

2(a1 – a2ν)[4
√

M + (2
√

M + 3c4) csch2( ε
√–c2

2 ξ )]
, (48)

δω(x, t) = –
(α + ν + a2Ω)

2(a1 – a2ν)
+

3c2(3λ + 2μ – σ )
2(a1 – a2ν)[2ε

√
M cosh(√–c2ξ ) + 3c4]

, (49)

δω(x, t) = –
(α + ν + a2Ω)

2(a1 – a2ν)
+

3c2(3λ + 2μ – σ )
2(a1 – a2ν)[2ε

√
–M sinh(√–c2ξ ) + 3c4]

. (50)
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4 Graphical interpretation
The chirped soliton solutions of the FL equation (1) are described graphically. Some of the
obtained solutions are depicted by selecting different values of parameters to understand
the physical meaning. In each figure, we display the 3D plot of the modulus and real part
of optical solitons as well as the 2D plot of their corresponding chirp. For example, the
plots of the modulus of chirped dark soliton solution (20) and the chirped singular soliton
solution (21) are represented with different values of parameters in Figs. 1(a) and 2(a),
respectively, where a1 = 4, a2 = 1, b = 2, α = 2, λ = 6, μ = 1, ν = 1, σ = 2, Ω = 3. The real
part and associated chirp of solutions (20) and (21) are illustrated in Figs. 1(b)–(c) and
2(b)–(c), respectively. Figure 3(a) demonstrates the plot of the modulus of chirped bright
soliton solution (25) whereas the real part and corresponding chirping of solution (25)

Figure 1 Chirped kink soliton solution (20) with a1 = 4, a2 = 1, b = 2, α = 2, λ = 6, μ = 1, ν = 1, σ = 2, Ω = 3.
(a) Modulus. (b) Real part. (c) Corresponding chirp

Figure 2 Chirped singular soliton solution (21) with a1 = 4, a2 = 1, b = 2, α = 2, λ = 6, μ = 1, ν = 1, σ = 2,
Ω = 3. (a) Modulus. (b) Real part. (c) Corresponding chirp

Figure 3 Chirped bright soliton solution (25) with a1 = 2, a2 = 4, b = 2, α = 2, λ = 6, μ = 1, ν = 1, σ = 1,
Ω = –3. (a) Modulus. (b) Real part. (c) Corresponding chirp
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Figure 4 Chirped dark soliton solution (27) with a1 = 4, a2 = 1, b = 2, α = 2, λ = 6, μ = 1, ν = 1, σ = 2, Ω = 3.
(a) Modulus. (b) Real part. (c) Corresponding chirp

Figure 5 Chirped bright soliton solution (28) with a1 = 4, a2 = 1, b = 2, α = 2, λ = 6, μ = 1, ν = 1, σ = 2,
Ω = 3. (a) Modulus. (b) Real part. (c) Corresponding chirp

Figure 6 Chirped bright soliton solution (41) with a1 = 3, a2 = –4, b = 2, α = –6, λ = 6, μ = 1, ν = 1, σ = 2,
Ω = –2. (a) Modulus. (b) Real part. (c) Corresponding chirp

are shown in Fig. 3(b)–(c). We describe the modulus of chirped dark soliton solution (27)
in Fig. 4(a). Its real part and corresponding chirping are presented in Fig. 4(b)–(c). The
modulus of chirped bright soliton solution (28) is depicted in Fig. 5(a) while the real part
and associated chirp of solution (28) are plotted in Fig. 5(b)–(c). Using different values
of parameters, the modulus of chirped bright soliton solution (41) is shown in Fig. 6(a)
and, its real part and corresponding chirping are presented in Fig. 6(b)–(c), where a1 = 3,
a2 = –4, b = 2, α = –6, λ = 6, μ = 1, ν = 1, σ = 2, Ω = –2. Figure 7(a) displays the modulus
of another type of chirped singular soliton given by (42). The real part and associated chirp
of solution (42) are illustrated in Fig. 7(b)–(c).
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Figure 7 Chirped singular soliton solution (42) with a1 = 4, a2 = 1, b = 2, α = 2, λ = 6, μ = 1, ν = 1, σ = 2,
Ω = 3. (a) Modulus. (b) Real part. (c) Corresponding chirp

5 Discussion and conclusion
Herein our target is to compare the results obtained here with corresponding results of
some previous studies in the literature (e.g., [22–31]). The authors in [22, 23], for instance,
utilized the trial equation method and the complex envelope function ansatz to examine
the combined solitary wave and chirped soliton solutions of the FL equation (1) when
perturbation terms are neglected (i.e., α = λ = μ = 0). The studies in [24–31] implemented
various types of methods and extracted different forms of exact solutions to Eq. (1), where
the chirp-free soliton solutions are retrieved. In the present work we have investigated the
chirped soliton solutions of the FL equation (1) by applying the auxiliary equation method
with two forms. In addition to this, the associated chirp for each of the optical solitons is
derived. We deduce from these discussions that the obtained chirped soliton solutions are
new and the analysis in our paper is more general than the analysis in [22–31].

The current study discussed the chirped soliton solutions of the FL equation in the pres-
ence of Hamiltonian perturbation terms. The complex envelope traveling-wave hypothe-
sis is invoked to reduce the governing model to an ODE. The resultant ODE is a first-order
nonlinear ODE with six-degree terms. Hence, it is handled analytically using the auxiliary
equation method with two structures. As a result, different types of chirped soliton solu-
tions including bright, dark, kink and singular solitons are derived. Additionally, a set of
combo optical soliton solutions are obtained as well. The associated chirp is also induced
for each of these optical solitons. The graphical representations for some obtained chirped
solitons are also exhibited by selecting suitable values of parameters.
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