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Abstract: In this paper, we apply the unified Riccati equation expansion method, as well as two forms of auxiliary
equation methodology, to find highly dispersive optical solitons in the nonlinear Schrédinger’s equation having a poly-
nomial law of the refractive index change. Bright, dark and singular solitons as well as periodic and Jacobi elliptic solutions
are obtained that are presented together with their existence criteria.

Keywords: Highly dispersive solitons; Polynomial law

PACS Nos.: 060.2310; 060.4510; 060.5530; 190.3270; 190.4370

1. Introduction

One of the most important aspects of soliton science is the
identification of exact soliton solutions. It is always a
daunting task to locate an exact solution, especially when the
governing model is highly nontrivial. This paper takes up the
challenging task to attain that goal for the nonlinear Schro-
dinger equation with a polynomial law of the refractive index
change. There exist several integration algorithms nowadays
that make this achievement possible for a variety of physical
situations [1-42]. This paper addresses highly dispersive
optical solitons when the refractive index change stems from
the polynomial law that is alternatively known as the cubic—
quintic—septic (CQS) nonlinearity. A few effective integra-
tion methods will be implemented to the governing model
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that will reveal several forms of the optical solitons sup-
ported by the model.

Thus far, various ingenious integration algorithms have
been invented for finding exact solutions to different nonlinear
evolution equations. A few such exemplary schemes include
the (G’/G)-expansion [18, 26, 29, 30], the modified simple
equation method [31-33], generalized Kudryashov’s algo-
rithms [19, 34], various soliton ansatz methods
[11, 35-38, 41], the new auxiliary equation methodology
[13, 14], the exp (—¢(&))-expansion [1, 12, 15, 24], the uni-
fied Riccati equation expansion [25], new auxiliary equation
algorithms [23], the generalized auxiliary equation procedure
[42], new extended auxiliary equation processes [39, 40], the
semi-inverse variational principle [16, 17], the simplified
Hirota’s method [27, 28] and a variety of others.

A selected few algorithms will be implemented to
address highly dispersive optical solitons in the present
model. These concepts have been proposed in a number of
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recent articles [2—10]. More precisely, the governing non-
linear Schrodinger’s equation (NLSE) with inter-modal
dispersion (IMD), third-order dispersion (30D), fourth-
order dispersion (40D), fifth-order dispersion (50D) and
sixth-order dispersion (60D) is taken into consideration, in
addition to the usual group velocity dispersion (GVD). The
details of the mathematical model and its technicalities are
exposed in the subsequent sections and subsections.

1.1. The governing model

The objective of this paper is to apply three integration
algorithms mentioned above, to construct the optical soli-
tons and other solutions of the following NLSE with CQS
nonlinearity [8-10]:

iCIt + iaqu + arqxx + ia3CIxxx
+ 4G + iaS Qe T A6Gxxexxx (1)

+ <b1|9|2+b2|61|4+b3|4|6)q =0,

where the complex-valued function g(x, ¢) is the wave
function that represents solitons and other forms of non-
linear waves, while x and ¢ are independent spatial and
temporal variables, and i = \/:‘1 . The first term describes
temporal evolution, while a;(j =1,2,...,6) are real con-
stants which represent IMD, GVD, 30D, 40D, 50D and
60D, respectively. Next, by, b, and b3 are the coefficients
of the polynomial CQS nonlinearity, coming from the
change in the refractive index of the medium. Equation (1)
has been discussed in [8—10] by using the F-expansion
method, exp(—y/(c))-expansion method and the extended
Jacobi’s elliptic function expansion.

The article is organized as follows: In Sect. 2, the
mathematical analysis of Eq. (1) is performed. In Sect. 3,
the preliminaries are discussed. In Sects. 4-6, Eq. (1) is
solved using the three integration algorithms mentioned
above. In Sect. 7, conclusions are given.

2. Mathematical analysis

For traveling wave solutions of Eq. (1), the form of the
solution is presumed to be

q(x,1) = g(&)e"™, (2)

where g(&) is a real function representing the amplitude of
the wave, with the traveling wave variable

E=x—wt (3)

such that v is the group speed of the wave. The phase of the
wave (x, 1) is taken as

Y(x, 1) = —kx + ot + 0, 4)

where k is the frequency, w is the wave number, and 0 is
the phase shift of the soliton. Substituting (2) into (1) and
separating the real and imaginary parts, one finds that the
real part has the form

a6g'® + (ay — 5ask — 15a6k>)g™ + (ay + 3ask
— 6a4k* — 10ask® + 15ask*)g”
+ (=0 + ark — ayk* — ask® + ask* + ask® — agk®)g
+ big’ +bag’ +b3g’ =0,
(5)
while the imaginary part is
(v — a; + 2ask + 3azk* — 4ask> — 5ask*
+ 6agk®)g + (—a3 + 4ask + 10ask* (6)
— 20ask>)g" — (as — 6ask)g® = 0.
The superscripts of g represent the derivatives w.r.t. .

From Eq. (6) and with aid of the principle of linear
independence of different powers of k terms, one gets:

as — 6kag =0 (7)
3a; — 4k(3as + Sask) = 0 (8)
and the soliton speed is given by

v=a, — 2ayk — 8k*(ay + 2ask). 9)
Now, real part (5) reduces to

g9+ Aug® + A" + Arg (10)
+ Asg’ +Asg’ +Arg’ =0,

where

k
Ay = —— (60 — 6ark + 6ark* + 18ask* + 35ask’),
as

3k
Ay == (2a, + 12a4k* + 25ask’),
as

6b1k 3k
Ay =—5 Ay === (2a4 + Sask),
as as
AS :@7
as
bsk
As :6_37
as

(11)

provided as # 0.
The problem is reduced to solving Eq. (10). To this end,
we use the proposed three methods mentioned in abstract.

3. Preliminaries

We further assume that Eq. (10) has the formal solution:
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M
8(&) = S wFi(0), (12)
i=0
where F(¢) satisfies the first-order auxiliary equation:
N
[F'(O)'= D> mF(¢). (13)
j=0

Here «; and h; are constants to be determined such that
oy # 0 and hy # 0; M, N are related positive integers, and
T =1 or 2. The choice of the solution method crucially
depends on t. We determine M in (12) by using the
homogeneous balance method, as follows:

If D(g) =M, then
D(g)=M+——1,D(g") =M +=— —2, and hence we
have the relatibn t

N
D{g‘vgm} =M(s+1)+ (— - 1>r. (14)
T
Balancing g'® with g7 in Eq. (10) and using (14), one gets:
N
M=——1. (15)
T

In the next sections, we will solve Eq. (1) utilizing different
methods, depending on the value of .

4. Unified Riccati expansion

If = 1 in Eq. (15), then one gets M = N — 1. By choosing
N =2, one gets M = 1. Then, according to the unified
Riccati equation expansion method [25], Eq. (10) has the
formal solution:

8(&) = oo + uF(Q), (16)

where o and «; are constants to be determined, such that
oy # 0 and F(&) satisfies the Riccati equation:

F'(&) = ho + h F(&) + hyF? (&), (17)

Here hg, hy and h, are constants to be determined such that
hy # 0. Substituting (16) along with (17) into Eq. (10),
collecting all the coefficients of F/(&) (j =0,1,...,7), one
finds the following set of algebraic equations:

F7(&) : Aqa] + 72004k = 0,
FO(&) : 25200 h3hy 4 TA70008 = 0,
F3(&) : 24A40015 + Asor;
+ 16800 i3 1o + 336001 h3h? 4 2147030 = 0,
F*(&) : 60A40nh3hy 4 42000 hhiho + 35A7030)
+ 21000, A3h; + 5As0g0; = 0,
F3(&) : 10As0p00 + 18480, 3y by + 60A 400 hhohy
+ 6301 hah + 3As0nhihy
+ 1544005y + 11760, B3RS ho 4 21A70502
+ 3A3rx0cx% =0,
F?(&) : 50A404h2h3 + 6020 3R]
+ 354700005 + 35840 3hhg 4 10Ased e (18)
+ 2401 h5 + 123204715k
+ 40A401m3hg + Az = 0,
F'(&) 1 Ayog + Az + Asog + Az + Asou i hg
+ Ayaihyho + 520 halihd
+ 13601 h5hghy + 8Asohohii
+ ahihy = 0,
FO(&) : Agouiht + Agoy b3 + 240 hohy + TA7050,
+ SAsogon + 22Aa0hahoh?
+ 3A3cx§oc1
+ 164400313 + oy hS + Aoy 4 7200 W3k 2
+ 1140 hyhthg + 272013k = 0.

On solving the above algebraic Eq. (18) by using the
Maple, we find the following results:

.
Ar= 85;‘;& (_Z—(jy

1 7542
{2A4A5 (—fTO)“Jr 5 _ 245A3}
7 7
1
— — (90043 — 3675A3A45A; — 18A3A2
857514%( 5 3A5A7 4 7)’

1 90\ 3
()
27175\ 4

1 A2 4
[A4A5(§(7’)3175A3 +55 5} + A2,

A7 25
20\6
oo = 0, o = h2 <—7A—7)6,
hf—LA(—@)%%A hy =0,k =h
0 — 420h2 5 A 4 (1] — Y, 12 — 12,
(19)
provided
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It is well known [25] that Riccati equation (17) has the
following fractional solutions:

w VAl () )

22 oy [y tanh (YA¢) + 11

h \/_[rgtan 5) ] )
,le‘er 2h2[r4m(7 )Jm} ,if A<Oand r3 + 1 #0,

Jif A>0and 2+ 12 #0,

wh

hy 4 1
2h2 h2§+r5’

if A=0,
(21)

where r;(i = 1,2,...,5) are arbitrary constants. Here A =
h% — 4hyhy can be written in the form:

A= 1(1)5 {A5( )+6A] (22)

By the aid of solution (21), we find the following types of
solutions for Eq. (1):

Type 1: A > 0. Substituting (19) along with (21) into
Eq. (16), we have the solitary wave solutions of Eq. (1) in
the form:

q(x,1) = il(_@)% /i

2 Ay
r tanh( [x — aj + 2axk + 8k (as + 2a5k)]\/Z) +r

o) tanh( [x —a; + 2a2k + 8k3(as + 2a5k)]\/Z) +r
expli(—kx + wt + 0].
(23)

In particular if r; # 0 and r, = 0, then Eq. (1) has the dark
soliton solutions of the form:

q(x,t) = :I:l <—@)%\/K

2 A7
1
[tanh([x — a1 + 2ask + 8K (as + 2ask) | 5 JZ)}
expli(—kx + wt + 0],
(24)

while, if ry =0 and r, # 0, it has the singular soliton
solutions of the form:

_ 4l <_@>%\/K

2 A7

[coth([x — ay + 2ak + 8k (ay + 2ask)] %ﬂ)}

q(x,1)

expli(—kx + wt + 0].
(25)
Type 2: A<O0. Substituting (19) along with (21) into

Eq. (16), we have the periodic wave solutions of Eq. (1) in
the form:

q(x,t) = :t% (—?)%ﬂ

7

r3 tan (% [x — aj + 2a:k + 8k (ay + 2ask)]V —A) —ry
ratan(}[x — ay + 20k + 8K (ay + 2ask) V=R ) + 15

expli(—kx + wr + 0],

(26)

In particular if 3 #0 and ry =0, then Eq. (1) has the
periodic wave solutions of the form:

ate) =5 () VA

2 Aq
[tan ( [x — a1 + 2a0k + 8K (as + 2ask)] %V—A)]
expli(—kx + wt + 0],
(27)

while, if 3 =0 and ry # 0, it has the periodic wave
solutions of the form:

q(x,t) = :I:l (—@)%ﬂ

2 A7
[eot([x — ay + 2axk + 8k (ay + 2ask)] %\/—_A)]
expli(—kx + wr + 0],
(28)

On using (11) and (19) one can show that the wave number
w in (23)—(28) is given by:
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1 90
= 185754 ( )
51450k{ A
1 11A2 15
A+ Ay — 3 (KB +=A
[(35 4+t > 35A7< *539 4)}
75a5A
975 (1242 — 49A;45)

A7 (29)
— [2as(9A3 — 171500k° + 686k°A3)

+

1
— 154350%> (k3a4 + galﬂ

749A4a5A5( ) <k2 + 429A4>}

where
1050k (@, + 6%ay)
(=) [Asds ()~ ] 13125k 42843
(30)

as =

in which A;(i = 3,4,5,7) are given by (11).
Type 3: A=0. Then h} = 4hoh, and consequently,
algebraic Eq. (18) gives the results:

3

6A
A,:O,Azz—A3( 90) Ag = -

2
(=)’ (31)
OC():0,0C] :hz( 720) /’l():O hl —O hz—hz

Substituting (31) along with (21) into Eq. (16), we have the
rational solutions of Eq. (1) in the form:

1
_ o (_ 720\s| M
alst) = (-77) [h2§+r5

} expli(—kx + wt + 0],
(32)

On using (11) and (31) one can show that the wave number
o of the soliton in (32) is given by:

k 1
= 8 [4Ok4a5 + 6a1 +A3 (—Z—(j) 3615 + 18k3a4], (33)
and
Agas [ 90\ 3
b, = ——"2 <_f) , 34
= -2 (0 (34)
where

6k(a2 + 6k2a4)
as=———1—, (35)
Az (=) +75k*

in which A;(i = 3,7) are given by (11).

5. The new auxiliary equation

If t = 2 in Eq. (15), then one has M = 5 — 1. According to
this method [23], if we choose N = 8, then we find M = 3.
In this case Eq. (10) has the formal solution:

g(&) = op + o F (&) + 0 F (&) + o3 F (&), (36)

where o, o1, o, and o3 are constants to be determined, such
that o3 # 0 and F(&) satisfies the new auxiliary equation:

8
= WFi(©). (37)
7=0
Here hj(j = 0,1,.. ., 8) are constants to be determined such

that hg # 0. Substituting (36) along with (37) into Eq. (10),
collecting all the coefficients of F/(&)[F' (&)
(j=0,1,...,21,k=0,1), one obtains a set of algebraic
equations which can be solved by using the Maple to get
the following sets of solutions:

Set 1.
.
A1 = 8?;5 ( /QT(:)
1 4 AZ
[12A4A ( 3‘:) 25A75 —245A3]
- 1711—5/43 (13543 — 735434547 — 94343),
1
A2 =355 (797(7))3 (38)
{8A4A5(/9;7));350A3 +6f{j§] % 4

1
72013\ 6

063:3(— 8),0!2:0,()(1:0,
Aq

OC():O,I’Z():hl:h3:h4:h5:/’l6:h7:0,

1 3
"= ~T590 [AS( )‘+6A4}’
provided
A7<0 and hg > 0. (39)
Set 2.
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A4 [ 90\
A (- *)
178575\ 4,

[2A4A5( 90) L7545 245A3}
A7 A7
1
+ 8575A2
[3675A3A5A7 — 90043 + 18A43A7],

1 90\ 3
(D
27175\ A

[A4A5 >7175A T

55421 28
A; 175°% (40)

2
hs = —
> 7315

ho=hy = hy = hy = he = hy = 0,

2
105hs {AS (—?)#6&} ,
7

provided
2
As (—/3—0)3+6A4 >0,A; <0 and hg > 0. (41)
7

According to the well-known solutions of Eq. (37) obtained
in [23], we find the following types of solutions:

Type 1: If h0:h1:h3:h4=h():h7:0,
hg — 4hyhg > 0, h, > 0, substituting (38) into Eq. (36), we
have the periodic wave solutions of Eq. (1) in the form:

q(x,t) = :I:l (—@f\/ﬂ

2 Aq

[sec G [x — a) + 2ak + 8K’ (ay + 2ask)] \/ZK)}

expli(—kx + wr + 0],

(42)
provided
%
A= {A5< ) +6A4] > 0. (43)
Type 2: If h02h12h3=h4:h6:h720, hg—

4hyhg < 0, hy > 0, substituting (38) into Eq. (36), we
find the singular soliton solutions of Eq. (1) in the form:

q(x,t) = :I:% (—1@)%@

7
1
[ csch (E [x —ay + 2ark + 8K (as + 2a5k)} vV —2A>}

expli(—kx + wr + 0],

(44)
provided
_ 90\ 3
A= 1o [AS (_Ai) +6A4] <0. (45)

On using (11) and (38), one can show that the wave number
o in (42) and (44) is given by:

1
: {Sas (—3) [4943 (A4 + 358%)

51450k
A2 > 75asAs >
— 22 (637k* — 9A4) | — 49A3A7 — 9A
(637 — o) |~ 052 (a9, — o)
+as (343000k° — 4547 — 1813k*A3)
1
+154350k (k3a4 + 3a1>
- 4a5A4A5 ( ) (49](2 + 3A4) }
(46)
where
1050k(a; + 6k%as)
as =

(=20)° [4A0s (=) —17545 + 8] — 13125k + 3747

(47)

in which A;(i = 3,4,5,7) are given by (11).

Type 3. If h():]’ll :h3:h4:h6:h7:0,h§f
4hyhg = 0, hy > 0, substituting (40) into Eq. (36), we have
the same dark soliton solution (24) and the same singular
soliton solution (25).

6. The new extended auxiliary equation

According to the new extended auxiliary equation method
[39, 40], Eq. (10) may have the formal solution:

8(&) = a0 + uF(E) + oaF? (), (48)

where o, o; and o, are constants to be determined such
that o # 0 and the function F(¢) satisfies the following
first-order auxiliary equation

F2(&) = ho 4+ haF? (&) + haF* (&) + heF° (&), (49)

such that ;(j = 0,2,4,6) are constants to be determined. It
is well known that Eq. (49) has the following solution:
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1

F(&) = H—;‘(l if(af))r (50)

1
2
where f(£) could be expressed through the Jacobi elliptic
functions sn (&,m), cn (&,m), dn (&, m) and so on. Here
0<m<1 is the modulus of the Jacobi elliptic functions.
Substituting (48) along with (49) into Eq. (10), collecting
the coefficients of each power Fi(&)(F' (&)),(i=0,1,
2,...,14,j=0,1), and setting these coefficients to zero,
one obtains the following system of algebraic equations:

[F(&)]": 46080013 + Aqa] =0,
[F(é)]l 7A7OCIOC2 + 103950(1//12 = 07

[F(&)]'"%: TA70005 + 8064005 h2hs + 21Aq02a5 = 0,
[F(&)]": 1701001 hEha + 3547003

[F(O)': (As + 214700)a5 +

+ 35A7O€lfx2

2+ 42A7oc0a1a§ =0,
105A70(00(

1 4
40320h A hy he +h =0
+ 6[(105 4+3 2) 6 + }062 )

1 1
F(&): A —As o
[ (5)] 75600(1{(72 70(0 + IGE 5)062

244
A7ocootl 05 A0

54 %
1 107
+[(72A4+ h2)h6+h4:|h6} 0,
1
[F()%: 50400<Q{1 vl (A7oc3 +?A5>ocoocg
+L 1A +A
237 g7 As T A% |

1
L oAg® 2
48 7204791 + 8holtg

+ ﬁh4h6(98/’l2 +Ag) + hZ} =

062A70600(1 +

[F(&)" 720{% <A7ocg + %A5> o003

7 ,(1
T (21A5 +A7°‘°> “

7 1 47
+ m 062A7O(()OC‘1‘ + mAﬂX? + Th()hé

1
+ 8h4(A4 + 71hy)he + hi}azl =0,
[F(&))°

1
+ 21002 <A7oc(2) + 7As) o3 + TA70008

- (10Ase2 + 35A700 + As)old

+ [(105A705 + 5As)af +
+ 11648h3
+320h2A4)he + 1205 (56, + As)] oz = 0,

5 35 1
[F(f)]si 240(1 { <4A50£(2) + §A7063 + 8A3) OC%
35 1 1 7
+ g&(% (A7<X(2) + $A5> Olooy + (24A5 + 8A7OCO> o
1 4 1 1
( 83 65 3 h2A4) he

(8A2 + 32256h¢hy

Ay +——hohy + —h3 +—
82+204 3 +4

+ hy(As 4+ 35h) } =0,
[F(E)]*: 22 [(30A502 + 3A5 + 105A703)o3
+240ho(56h; + Ay)he

1 5 1
4032( =2 + h A, +—A
+403 (2 >+ 0h4+168h2 st e 2>h4]

1
+ 350 <A7a§ + 7A5> oo + (214700 + 3A230

+ 104505)23 = 0,

1

1 10
[F(O)]: 504a {12 oo <A7°‘g +-As + 21A50((2)> a0

7
5 5 1 ,
+ (252A50(0 + 2A7OCO @A3)O€l

5
—ho(A4 + 35hy)h
+42 o(As + 2)he

<1§6h2A4+2;2A2+h0h4+:{’2h2>h4} 0
[F(E)]: [TA708 + 5As0 + 3A302 + 2880h3hs
+72ho(24hy + A)hy
+64h; + 4oAy + Ay + 16/5A4] 0

1 10
+ 21oag (A7ag + A5+ 21A5a3) =0,

7

1
A30 + 3013 hg

5
ASOCO +- 1

[F(O)]": 120 {172A7“° +13

1 1
ho(11h Aq)h —hA —A
+ho(11hy + 4)4+1222+12 1

1 1
— A Bl =0
EETICRRNT 2} ’

2 1 1
[F(&))’: 144k <h0h4 + §h% + ﬁAz + Ehm) o

+ OC()(Al +A3O((2) +A50£g +A7068) =0.

(51)
According to [39, 40], we have the following types of
SOI;UOHS]: If A (e — 1) (sm — 1) he >0
e 1: =" = ,

P OT T T 16hgm?

then from the above algebraic Eq. (51) and by using the

Maple, one gets the results:
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1
A = 24A,4A5A
' 17150(m2+1)2A%{[ e

m* — imz +1 (—%)%
3 A7
46
— 45 <m4 - ?mz + 1>A§
2 90
—490(m + ) A3A7:|A4A7< 1 )
7
1
— 1350(m* + 3) (m2 + §>A§
+ 7350(m” + 1)°A3AsA;
2
+90<m4 - gm2 + 1>A2A%}7
1

T S00 1Ay A (52)

) ()
)

— 350(m” + 1)°AsA;
e

65 1)A3

' ( )
4<m4+

oy — 2( 720h6)
Az

)

As (—/94—‘7))%+6A4

( 7zo>%

200(m2 + 1)

hé[ —90) +6A4}
-2 he = h,
"\ 210 m2 w1 T

provided

2
As (—3-?)3—&—6A4 > 0,A7<0 and hg > 0. (53)

Substituting (52) into Eq. (48), we have the Jacobi elliptic
function solutions of Eq. (1) in the form:

1
m 720\ 6 2
q(x.1) = i? (_A_7) (m2+1)

[ sn (; [x — a) + 2ask o

2
(m? + I)A):|

expli(—kx + wt + 0],

+ 8k’ (as + 2ask)]

or

L 70N 2
ate ) =5 (30) o

2
WA)}

expli(—kx + wt + 0],

+ 8Kk’ (as + 2ask)]

provided same constraint condition (43) is satisfied. On
using (11) and (52), one can show that the wave number w
in (54) and (55) is given by:

1 90
= —dasA,A A2< )
51450(m2 + 1)2A%k{ AN
[m* (344 + 49K%) — A4 (4m> - 3)

— 49K* (m* — 1)] + 8575A7as

90\ 3 2 1
< (-3) {(m2—|— 1)*As4s (35A4+k2)

9 62 138
42 2

k" ——A k" +——A
m ( 637 4> +m < +637 4)

37,5,
kA
¥ 7000 4)

9
_ 2 4
343000A7{ [(m +1) ( 3 600A4
19 9
K2A2 — A3 —2Kk°
o <3500 47171500 s

9 o5 1
— 55 (m +1)k(ka4+3a1>}

— 3675A345A7as (m* +1)°

1
+675asA3 (m* + 3) <m2 + 3> }

where
in which A;(i = 3,4,5,7) are given by (11).
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_ 2100(m? + 1)*k(as + 6ask?)
as = 134 180m Ai 1 2 N 38 ’ (57)
(=2)° [5(m + 22 + 1) (55 = 7043) + +8(m — m? -+ 1)Agds(=2)°] — 262504 (m2 + 1)+7443 (m* + Fi2 + 1)
In particular, if m — 1, then sn(¢, 1) — tanh(¢) and
ns(¢,1) — coth(§). In this case from (54) and (55), we - 1350 m +3
have the dark soliton solutions of Eq. (1) in the form: ) 2
+ 7350 Wl + ) A3A5A7
1/ 720\
— (= 2
qx.1) iz( A7> VA +90(m4—5m +1>AZA$}7
1
[tanh([x —ay + 2ark + 8K (as + 2a5k)] - \/&)} 1
2 = 3500 + 1), [BAsAT
expli(—kx + ot + 0], (m? + 1)°47
(58) (m* = m? = 1) (5 )
and the singular soliton solutions in the form: — 350(m +1 )2A3A7
1/ 720\¢ 4,62 5 1)A2 (61)
I — A
ax0) = +5 (-50) VA +65(’" MR A
1 1
[coth([x — ay + 2ark + 8K (as + 2a5k)] 3 \/&)} X (—%)3—1—74 <m4 + ;—jmz + 1>AiA7},
expli(—kx + wt + 0). N
pli( } = 2(_720%)‘” =0,
(59) 47

If m — 0, then ns(&,0) — csc(&). In this case from (55),
we have the periodic solutions of Eq. (1) in the form:

gt = %5 (-72)' V24

[csc G [x — ay + 2ask + 8K’ (as + 2ask)] \/ﬁ)}

expli(—kx + wt + 0].
(60)
B-m) (5 -m)
R 7 16k
from the above algebraic Eq. (51) and by using the Maple,

Type 2: If hy = , hg > 0, then

one gets the results:

1
A = 24A4A5A
: 17150(m2+1)2A%{[ e

(-3

46
— 45 (m4 — ?mz + 1>A§

—490(m? + 1 )A3A7}A4A7( j‘:)

2
Y <—@>% As (=) +6A4
0 A7 210(m? + 1)’
2
[ 45 (=) +644] 1
he = h
210m2 +1) ¢ @

hy =2

provided same constraint condition (53) is satisfied. Sub-
stituting (61) into Eq. (48), then Eq. (1) has the same Jacobi
elliptic function solutions (54) and (55).

h; B h3(4m* —5)
RR(1—m2)" 7 16he(m*> — 1)
he > 0, then from the above algebraic Eq. (51), one gets

Type 3: If hy=

the results:
1

- 16A4A5A
17150(2m2—1)2A${[ R
3 90\ 3
4 2 - _v
(m M 2> ( A7)
3
600 ( m* —m? —— ) A2 (62)
+ (m m 40)

1 2
— 1960 (m —§> A3A7
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1
X A4A; (—3—3)3—150(48m4 — 48m* 4 9)AL.

1 2
+ 29,400< 2 2) A3AsA;

5
+ 144 <m4 —m?+ g)AiAg},

2

1 13
v Y (P e B
35 5<m " +88)”’

1
720h3\ 6
0y = 2(—A—76) , 0 = O,

1
720\ 6
0= (=)
2
(m? = 1) |45 (—32) +644] e
210(2m2 — 1)

+360

(m2 — 1) [AS(—%)§+6A4]
210(2m? — 1)

)

h4:2 ah6:h67

provided

(2m* — 1 (63)

~—

r 2
As (_?:)3+6A4} <0 and A7 <0.

Substituting (62) into Eq. (48), we have the Jacobi elliptic
function solutions of Eq. (1) in the form:

1/ 70N 2
atet) =23 (=) \

1
{ ds (— [x — a1 + 2ask + 8k* (a4 + 2ask)] —ﬁA)}

[\

exp(i(—kx + wt + 6].
(65)
On using (11) and (62) one can show that the wave number
w in (64) and (65) is given by:
1
w =
102900(2m? — 1)

2
af = 2

2 3 90\ 7
oo 4 2 Ea 2| (
m <49A4 +k ) +49A4 +k }( AT) +68600A7as

2 1 ? 1 2
x4 m* =5 ) Asar( gz Ak

11 15 15
— —A? {m“ (k2 - —A4> —m? <k2 - —A4>

T {—392a5A4A5A3

35 539 539
13, 9 90\ 3

iy A =

8% "B “]}( A7)

— [(144m* — 144m* + 90)A;]
37
+ 10976k <m4 —m* + m)Aﬁ

1 2
—2744000 (m2 — 5) k% as

1\’ 1
+ 1234800 <m2 - 5) K (k3a4 +§a1>A$

1 2
—29400A3A5A7as (m2 — 2)

1/ 720\ [ 20-m2 3 2 4

gle.r) = +5 (<20)"\ [ —asA3(7200m* — 1350 — 7200m*) },

[ (1[ + 245k + 8K (a4 + 2ask)] 2 A)} (66)

nc |- |x—a ap ag as - >
2 (2m> =1) where
expli(—kx + ot + 0],
(64)
45 = 1050(2m? — 1)°k(az + 6ask?) p
(=0)! [40m* — 2 + 1)A4As (=)' 175 (4m* — 42 + 1)As + 352 (88m* — 88m2 + 13)] — 13125(2m2 — 1)K + 112(m — m? + 543 (67)

or in which A;(i = 3,4,5,7) are given by (11).

In particular, if m — 1, then ds(&,1) — csch (&). In
this case, from (65) we find the singular soliton solutions of
Eq. (1) in the form:
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q(x,t) = :I:l (—720)%@

2\ 4
1
[ csch (E [x — a1 + 2a2k+ 8k (as + 2a5k)} vV —2A)}

expli(—kx + wt + 0].
(68)

If m — 0, then nc(&,0) — sec(&) and ds(&,0) — csc(&). In
this case, from (64) and (65) we have the periodic solutions
of Eq. (1) in the form:

q(x,t) = i% (—?)%m

[sec (% [x — ay + 2axk+ 8k* (ay + 2ask)] \/ﬂ)} (69)
expli(—kx + wt + 0],

or

osc (3 + 2aake 800 + 2050] v2R)] 70

expli(—kx + wr + 0].

7. Conclusions

This paper constructs several soliton solutions to highly
dispersive NLSE with CQS nonlinearity. A number of
integration algorithms have produced a wide spectrum of
solutions possible. As a by-product of these integration
schemes, several additional solutions such as periodic and
Jacobi’s elliptic function solutions also emerge. These are
also listed, in order to gain a more complete spectrum of
solutions to the model. These solutions serve as an
encouragement to further proceed along with identifying
highly dispersive solitons in other models. Immediate
extension is to study models with birefringence and
DWDM networks. Other aspects also need to be addressed
in the present model. These include the demonstration of
the conservation laws of the model and the integration of
the model with the inclusion of perturbative terms.
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