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1. Introduction

The study of optical solitons in discrete spectrum is quite
widespread. There are several results that are reported in
its avenue. However, quite less attention has been paid to
soliton studies that stem from the continuous regime.
There are a few results that have been reported in this
context [1-10]. This paper revisits the study of embedded
solitons with 3 and % nonlinear susceptibilities. There
are two efficient integration schemes that are
implemented in today’s work to recover soliton solutions
to the model. These give away to bright, dark, singular
and combo singular forms of embedded solitons. The
existence criteria for these solitons are also listed. The
details of the integration procedures along with the
spectrum of soliton solutions are all enlisted in the rest of
the paper, but first, the governing model with its physical
interpretation is illustrated.

1.1. Governing model

The governing model with the quadratic nonlinearity
[1-10] is as follows:

i + 20l + D10 +,07T +difo*g =0, 1)

i, + 8T + byl +Cof +0,02 +8Jgr = 0. )

In this model, the independent variables x and t
represent the spatial and temporal variables, respectively.
The constants a; provide the chromatic dispersion, while
the constants b; assure the existence of spatio-temporal
dispersion (STD). Also, the coefficients c; provide the
existence of group-velocity mismatch because of
frequency difference between fundamental harmonics
(FH) and second harmonics (SH) fields that are given by
the complex valued functions q(x, t), r(x, t), respectively.
This model specifically governs embedded solitons that
are nonlinear waves and become confined to the
continuous spectrum of a nonlinear system. These
solitons arise in presence of opposing dispersion and
competing nonlinearities at FH and SH.

2. Mathematical analysis

To start off, the basic assumptions are

a(x.t) = P(Q)e ™Y, )
r(x.t) = Py(g)e? Y, 4)
where

£=n(x-vt), 5)

and v stands for the speed of the wave. Next, the phase ¢
is structured as
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o(X, 1) = —iX+ ot + 0,

(6)
where the frequency, wave number and phase constant
are designated as x,  and 0, respectively. Insert (3) and

(4) into (1) and (2). Then, from (1), real and imaginary
parts fall out

ﬂz(blv‘al)Pf"“ (03“‘ a11<2 _bl(")K)Pl -C,RP, ‘d1P13 =0, (1)

y= byo—2a,Kx

8
o (8)
respectively. And then from (2)
n?(bv—a, )Py + (2(1) +4ayK’ — dbyok —C, )Pz - ©)
~d, P’ - 8RR, =0,
— 2b2(0 — 4a2K , (10)
1-2b,k
Egs (7) — (10) reduce to
2n?(bv—a)R+ (w +2ax? - meK)Pl - (11)
-cRP, —d,P° =0,
nz(bv - a) P+ (2(0 +4ax? — dbok — Cz)Pz - (12)
—d,R? -8R’P, =0,
_ 2bw — 4axk , (13)
1-2bk
as long as
y=2a a=a b=2b b,=h. (14)
Thus, the governing equations can be written as
id, + 280, + 2b0, + 0" + o =0, (15)
if, + @, + b, +Cyr +d,q2 +8|gf’r = 0. (16)

Egs (11) and (12) are employed to retrieve solitons
for Eqgs (15) and (16).

2.1. F-expansion procedure

The solution structure of (11) and (12) is considered to be

(A7)

(18)

where A; and B; for 1<i <N are constants that need to
be designated, and the number N originates from
balancing principle. The function F(Q) obeys the form:

F'(c)=PF2(c)+QF(c)+R,,

where P, Q and R are constants. It is necessary to note
that the solutions of (19) are as follows:

F(¢)=sn(¢)=tanh(c), P=m?
Q=-(1+m?), R=1, m—>1,
F(¢)=ns(¢)=coth(¢), P =1,
Q=-(1+m?), R=m? m—o1,
F(¢)=sc(¢)=tan(¢), P=1-m?,
Q=2-m? R=1, m—0,
F(¢)=cs(¢)=cot(c), P=1,
Q=2-m? R=1-m? m—0,
F(¢)=cn(¢)=sech(¢), P=-m?,
Q=2m?-1, R=1-m? m—1,
F(C) = dS(C) = csch((;), P=1,
Q=2m*-1, R=—m2(l—m2), m—1,
F(¢)=nc(¢)=sec(c), P=1-m?,
Q=2m?-1, R=-m?, m—0,
F(¢)=ns(¢)=csc(¢), P=1,

Q=-(1+m?), R=m? m—0,

F(¢)=ns(¢)+ds(¢)= coth(¢)+ csch(&), P

2

(19)

N

| 3

, m—1,

~ N

F(¢)=sn(¢)+icn(¢)= tanh(¢)+isech(¢), P =—,

m?-2
2
F(2)= ns(g)+ es(¢) = cse () + cot(¢), P = %

© 4

, R 1,

, Mm—

1-2m* 1
Q_Ti R_Z, m—>0,
2
F(&)=nc(¢)+sc(¢)=sec(¢)+ tan(¢), P= _4m ,
1+m? 1—m?2
Q= +zm - R= 4m ,Mm—0 (20)

From the balancing principle, (17) and (18) take the
form:

R(6)= A +AF(),
P,(¢)= By + BiF(¢)+B,F?(¢).

(21)

(22)
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Plugging (21) and (22) along with (19) into (11) and (12) results in

(4a1<2 —4bkw+20-C, )QBO

Ay=0, B, =0, B, = ”
(2a1< —2bkw— Byc, + Q))R

- 2ak? —2bk®—ByC, +© , _ L 3P(2a1<2 —2bxw—Byc, + 03)
n== 20(bv+a) - Q5

8PRa’k” —16PRabk’m—8PRak?B,c; + 4Q2ax?B,¢,
8| +8PRax’o+8PRb%Kk%w? +8PRbkwB,c; —4Q%bk®B,C;

—8PRbk? + 2PRB,’c,” — 4PR®B,C; + 2Q%0B,c; —Q2Byc,C, + 2PR®?

d. =
' 3(2ax? — 2bxo- Bg, + of PR
Q2%c,” - 2Q%wc, + 3PRw? — 2Q2Byc,C, + 4Q2%wB,yC, — 6PRmB,C;
+4Q%xac, — 4Q%ak’c, + 3PRB,’c;” —12PRbkw? +12PRax’m
°l —8Q%bkmB,C, +8Q%aK2B,c, +12PRbkwB,c, —12PRak?B,c,
0, = +12PRb%k’w® — 24PRabk’w +12PRa’k*

3l2ax? - 2bko— Bye; + o) PR

Inserting (23) into (21) and (22) yields dark solitons

qxt) = iJ 3(2a1<2 — 2bkw— Bycy + (o) tanh{\/ 2ax? — 2bkw— ByC, + @[X -

25 4(bv-a)

r(x,t) =<B, —

1-2bk

2bo — 4ax

2ax? — 2bkw— ByC, + ® 4(bv - a)

singular solitons

2(4a1<2 —4bko+20-C, )Bo an 2[\/ 2aK? — 2bkw— By, +

X_
( 1-2bk

2bw — 4ax t):l el (~rx+ot+8g) ,

tj:l 2 (—rx+ot+6;) ,

qxt) = i\/3(2a1<2 —2bkw— Byc, + 03) COth[\/ 2ax? — 2bkw— By, + (o(x _ 2bo - 4a1<tj] i (werats0y)

28 4bv —a)

1-2bk

r(x,t)=4B;, -

2aKk? — 2bkw— ByC + © 4(bv-a)

and combo singular solitons

2(4a1<2 —4bkw+ 20 —-C, )BO cot 2[\/ 2ak? — 2bkw— ByC, + ©

( 2bw — dax
X —

1-2bk

Ak =2 J 6(2ax? — 2ok - Byc, + )
T 43

tﬂ

2 a— a—
+ esch [J 2ak” — 2bkow— By, + ©

2ax? — 2bkw— ByCy + © 2bo - 4ax
coth X—
bv-a 1-2bk
‘— 2bo — 4ax
bv-a 1-2bk

tﬂ

el (—rx+ot+0,)

Yildirim Y., Biswas A., Khan S. et al. Embedded solitons with ¥ and ¥ nonlinear susceptibilities

162

(23)

(24)

(25)

(26)

tJ] o (~rx+ot+6,) L @7)

(28)



SPQEO, 2021. V. 24, No 2. P. 160-165.

2 (43.](2 —4bko+2m0-C, )Bo
2ak? — 2bkw— Bye, + 0

Bo—

2

th 2ak? — 2bkw— ByC, + 2bo— 4a1<t
r(x,t) = @ bv-a X 1-2bk g2i(xratto) (29)
X
2
+csch \/ 2ak” —2bko-Byc, +® (X— 2bo—4ax t]
bv-a 1-2bk
These soliton solutions are valid for
5(2ax? — 2be - By, + ©)> 0, (30)
(bv - a)(ZaK2 —2bko— Byc, + co)> 0. (31)

2.2. Sine—=Gordon equation approach

The solution structures of (11) and (12) according to this approach are taken to be

Zcos v (©)[B; sin(v (¢)+ A cos (v (¢))]+ A, (32)

Zcos (@)IDysin(v (¢))+ G cos (v (&))]+ Co. (33)

where A;, B;, C;, and D; for 1<i< N are constants, the number N is determined from balancing principle, and V(¢)
holds

V(g)=sin(v())- (34)
Also, it needs to be mentioned that (34) has the following solutions:

sin(V(¢))=sech(¢) or sin(V(¢))=icsh(¢), cos(V(¢))=tanh(C) or cos(V(¢))= coth(¢). (35)
The balancing principle implies that

R(C)= Bisin(v (5))+ Acos(v(C))+ A, (36)

P,(¢) = cos(V(£))[D, sin(v(¢))+C, cos(V(¢))]+ D, sinV (£))+C, cos(V (£)) +C,. (37)

Inserting (36) and (37) along with (34) into (11) and (12) leads to

32a5¢” - 2bdka + 80 + ¢,d, )
=4 [— , :O, :0'
" \/ 2G6d ) bvra) 00 A
2
-  92ad¢ —2b61<w+&u+cld2), ~0,C,=0, D, =0,
8(5-6d;)

4a8%k? — 6adk 2d; — 4b5°k o+ 6bdkwd, + 28%m — 35w d, +35¢,d, — 9(>ldld2

8(5-6d, Jo

3(2a5¢2 - 208K + 80 + c,d, (25 - 3d,)

(6 —6d, ),

Co=

C,= , ¢, = dax’ — dbk o+ 20. (38)

Yildirim Y., Biswas A., Khan S. et al. Embedded solitons with ¥ and ¥ nonlinear susceptibilities

163



SPQEO, 2021. V. 24, No 2. P. 160-165.

Substituting (38) along with (35) in (36) and (37) yields soliton solutions

9(2a8K® — 2bdKw + 8 + Cd, )

adic® — 2bdKke + 8 + Cd, )

2bw — 4ax

a(x,t) =i\/— sech{\/—?’(2

8(6-6d,)

2(8

_ 4a3%c” — 6adk>d; — 403"k + 6bdkwd; + 26°w — 35w d, +35¢,d, — 9¢,dyd,

1-2bk

(X— tj:lei(KHmHe())’

—6d;)(—bv+a) (39)

3(5-6d, ),

3(2a61<2 — 2bdkm + 80 + cldz)(25 -3d,)

r(x,t)=4*

2bw

eZi(—KXerHGO)’ (40)

—4ax

3(5-6d, ),
)(X_

2(5-6d, (—bv+a)

1-

2bk

tj]

adic” — 2o+ 50 + ¢ d, )

3(2a82 — 2bdKk e + 8 + G, )

2bw — 4ax

) tanh{ J_ 3(2a8K? - 2bdKe + 8 + ¢,d,
cschN—

_ . |el
alxn = i\/ 5(5—6d,)

2(5-

1 1 1 12 1¥1Y2
p— +

(x-

tj:| el (—rx+ot+8q ) (41)

6d;)(—bv+a) 1-2bk

8(86-6d, )c,

. 3(2a6|<2 — 2bdkm + 3w + cldz)(ZS ~3d,) y

r(x,t) =

adic? — 2bdkw + 8o + ¢,d, )

3 2bw — 4ax

2i (—kx+ot+0,)

e . (42)

2(5-6d,—bv+a)

8(8-6d,)c,
xcothzl\/—?’(2 (x

1-2bk

tj]

Dark soliton (40) and singular soliton (42) are valid for
(560, )(— bv +a)(2adk? - 2ok + 50+ C,d, )< 0, (43)

while bright soliton (39) is valid for the constraint (43)
along with

5(5 - 60, )(2adk? - 2 + 30 + ¢, )< 0 (44)
and singular soliton (41) is valid for the constraint (43)
along with

5(5 - 60, ) (2adK - 2b8kw -+ 50 + ¢,d, )> 0. (45)

3. Conclusions

Retrieved in this paper have been bright, dark, singular
and combo singular embedded optical soliton solutions
with the quadratic nonlinearity. A couple of integra-
tion schemes have been implemented to make this retrie-
val possible. The soliton solutions appeared with their
respective existence criteria. Thus, the obtained results
have paved its way to further future developments. One
can handle embedded solitons using the variational
principle as asequel to previously reported results [5].

This time it needs to be studied using additional pulse
formats. Another avenue to explore in this area is to
handle the problem using the Lie symmetry analysis that
will be a continuation and extension to previously
recovered results [3]. These studies are under way, and
their results will be soon published.
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i x(3) HeJIHIIHOI0 CIPUHAT/IUBICTIO

AHoTanisg. Y miif poboti mociimkeHo BOyZOBaHI CONITOHM 3 KBAaAPATHYHOIO HENIHIHHICTIO 3 ypaxyBaHHAM €QeKTy

MIPOCTOPOBO-YaCOBOI JUCIIEPCii.

OOuaBi cxeMH iHTETpyBaHHA NPUBOIATH JI0 OTPHUMAaHHS SCKPaBUX, TEMHUX,

CHHTYJISIPHUX Ta KOMOIHOBAaHMX CHHTYJSPHHUX COJIITOHHUX PO3B’S3KIB y HENEPEPBHOMY peXHMi. BpaxoBaHo Takox

KpHUTepil iCHyBaHHS X COJITOHIB.

. 2
Kurouosi ciioBa: x( )

i ¥® neniuiitnocri, BGY10BaHi COTITOHM.
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