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Abstract. We retrieve analytically a bright 1-soliton solution to a perturbed
cubic—quartic Lakshmanan—Porsezian—Daniel model, using a semi-inverse
variational principle. The perturbation terms are considered arising from the
condition of maximum allowable intensity. The restrictions imposed by integrability
considerations on the model parameters are enlisted. It is important that the other
analytical approaches available fail to recover the analytical bright-soliton solution
to the model with the maximum allowable intensity.
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1. Introduction

Lakshmanan—Porsezian—Daniel (LPD) equation is one of the most viable models that addresses
dynamics of soliton propagation through waveguides [1, 2, 5]. It has been extensively studied and
a number of important results have been recovered. These include stationary solitons [1], soliton
solutions obtained using a sine-Gordon approach [5] and some others. Now it is time to take a look
at cubic—quartic (CQ) solitons appearing in the presence of different Hamiltonian perturbation
terms associated with a maximum allowable intensity. It is interesting that application of a semi-
inverse variational principle can lead to 1-soliton solutions which cannot be obtained using any
other integration schemes. The details of the semi-inverse variational principle, along with its
successful application to the current model, are elucidated in the next sections, after a brief
introduction to the governing model.

A dimensionless structure of the LPD model with CQ solitons (abbreviated as CQ-LPD

further on) in the presence of perturbation terms is given by [5]
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where ¢ and x are respectively temporal and spatial variables, g(x,) represents the wave profile,

and i =~/—1. The first term on the L. h. s. describes the linear temporal evolution, while « and b are
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the coefficients linked with the third-order and fourth-order dispersion terms, respectively. The
coefficient ¢ describes the Kerr law for the nonlinear refractive index. On the r. h. s. of Eq. (1), the
coefficients «, 8, y and A originate from the perturbation terms that come from the nonlinear

dispersion, and & corresponds to the two-photon absorption. The Hamiltonian perturbation terms

are associated with the coefficients 6, (j =1, 2 and 3). Here 6, governs the self-steepening effect,

and 6, and 6, are due to the nonlinear dispersion effects. Finally, the parameter m corresponds

to the maximum allowable light intensity.

The linear dispersion terms that stem from the third- and fourth-order dispersions constitute
the CQ solitons. These dispersion effects are obtained after replacing the chromatic dispersion, due
to its low count, by the combined third- and fourth-order dispersions. Hence, the CQ solitons
associated with the LPD model start touching upon the solitons that arise from the chromatic
dispersion in the same model. Such a novel concept has recently gained considerable attention, as
has been reflected in the recent reports (see Ref. [5]). It is not out of place to point out that, in the
past, the LPD model with the chromatic dispersion has already been addressed using the semi-
inverse variational principle [2]. Therefore, in the current work we study the same model, though
with the chromatic dispersion replaced collectively by the third- and fourth-order dispersions.

2. Mathematical analysis

To start with, let us set

q(x,t)= g(s)eiw(x’t) , (2)
which is the phase—amplitude decomposition of the complex-valued function ¢ (x, t) . Here

s=x-vt 3)
forms the amplitude portion, with v indicating the soliton velocity. The phase component is given by

¢(x,1)=—Kkx+ot+6,. 4)

The parameters x, @, 6, and v are the wave number, the frequency and the phase constant

of soliton. Substituting Eq. (2) into Eq. (1) and decomposing it into real and imaginary parts yields
a pair of relations. In particular, the imaginary part yields in the following:

(a—4bK)g" —(v+ 3ax? —4bk’ )g'

. (5)
+{(2m+1)6, +2m0, + 0, + 2 (a +y - )} g’g' =0

Here g’ stands for dg/ds, g" for d*g/ds”, and so on. Setting the coefficients entering in

the linearly independent functions to be zero results in the soliton speed,

v=-3ax’ +4bk’ . (6)
Moreover, a pair of parameter constraints emerge:
a =4bk (7N
and
2k(a+y—A)+(2m+1)6,+2m0, +6,=0. (8)

Next, the real part of Eq. (1) gives
bg™) +(3ar<—6brc2)g”—(7/+l)g2g”—(a +[3)gg'—(co+arc3 —brc4)g

)
+{c+(o¢—[3+)/+/1)K2}g3 -5g +x(6,+6,)g™"" =0.
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For integrability, we put
a+p=0 (10)
and
y+A=0. (11)
This reduces Eq. (9) to the form
bg™ + (Barc — 6bK* )g” - (co +ax’ —bx* ) g

. (12)
+{c+(a—ﬂ+y+/l)r<2}g3—5g5 +Kk(6,+6,) g™ =0

Multiplication of Eq. (12) by g’, integration with respect to the variable = and subsequent
simplification reduces it to
6b(g")2 ~18k (a —2brc)(g')2 +6(co+arc3 —brc4)g2

, (13)
_3{c+(a—ﬂ)1<2}g4 +25g° +Mg2m+2 _K
m+1

where K denotes an integration constant. The stationary integral is now defined as

J= jde

L |6b(g") —18x (a—2bx)(g) +6(w+ax’ —bx*)g* | - (14)
- ds

_J; —3{C+(a_ﬂ)’(2}g4+25g6+—6’((91+93)g2m+2

m+1

3. Application of semi-inverse variational principle
The semi-inverse variational principle states that the bright-soliton solution of the perturbed CQ—
LPD Eq. (1) would bear the same form as its unperturbed counterpart upon setting 6, =0 at

j=1,2 and 3. However, the soliton amplitude 4 and its inverse width B for the perturbed version
are determined from a governing pair of relations,

aJ
-0 15
Y (15)
and
aJ
-0 16
OB (16)
Next, the amplitude part of the homogeneous CQ-LPD equation is structured as [5]
g(s)=A sech(Bs) . (17)
Substitution of Eq. (17) into Eq. (14) and integration lead to
28b 5 2 3 4 4
J = 4B’ =12 (a~2bx) 4 B+12(w+ax’ —bx )?
, (18)
4 5 12x(6,+6,)G 4>
—4{c+(a—ﬂ)’<2}A—+ﬁA—+ €(6,+0,)G 4
B 15 B 2m+1 B
where
r(m)r(n
G (19)
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From the stationary integral, the coupled system of Egs. (15) and (16) can be reformulated as
7bB* 15k (a—2bi) B> +15(0+ax® - bx* )

1 1 (20)
~10{c+(a-B)K’} 4" +854" + S(mr)e(0+60)C
2m+1
and
63bB" — 45k (a—2bx) B’ —45(w+ax’ — bi* )
4 1 . 21)
+15{c+(a-p)x’} 4 -854" - S(m+)e(0.+6)C
2m+1
Upon uncoupling, a relation biquadratic in B emerges:
84bB' 90k (a—2bx) B’ —15{c+(a— B)x*| A* +1654' + HA" =0,  (22)
where
H=3m(m+1)K(91+93)G ‘ (23)
2m+1
Eq. (23) reveals the relationship between the soliton amplitude and its width as
45k (a —2bx +\/2025K2 a—2bk)’ +84b|15{c+ a—-p)k* A -165 4" — HA™" :
o _|45x(a=260) (a-26x" +84b[ 15 +(a - )] I s

84b

The mathematical structure of Eq. (24) poses a couple of parameter constraints for the bright
soliton to exist. They are as follows:

20257 (a—2bx)’ +84b[ 15{c+(a - B)x* | A =165 4" - HA™" | >0 (25)

and

b[451<(a —2br<)+\/2025rc2 (a—2bK)’ +84b] 15{c+(a— B)x’} 4> ~165.4* —HA“H >0. (26)

Hence, the bright 1-soliton solution to the CQ-LPD equation with the maximum allowable
intensity is given by

q(x,t)=4 sech[B(x —vt)} rxrart) 27

where the amplitude—width relation for the soliton is given by Eq. (25) and the soliton velocity by

Eq. (6). The parameter constraints imposed in order that the solitons existed are given by Egs. (7),
(8), (26) and (27).

4. Conclusion

The present work has recovered the bright 1-soliton solution of the perturbed CQ-LPD equation,
in which the perturbation terms are those laid by the maximum allowable intensity. It is important
that this analytical soliton solution cannot be retrieved by any other available analytical schemes at
the arbitrary exponents of intensity. Our solution is not exact since it is based on the semi-inverse
variational principle. Nevertheless, this solution would be interesting for the telecommunication
industry whenever the chromatic dispersion is minimal and so can be discarded. We have also
enlisted the constraints imposed on the model parameters, which emerge naturally from the very
structure of the solution. Our results are going to be of great value for the Internet communication
industry.
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Anomauin. Buxopucmosyrouu HanieoOepHenutl 8apiayiiHull NPUHYUN, AHAIIMUYHO 00EPICAHO
sckpasutl 1-conimonnuil po3e’si30k 0as 30ypenol Kybiuno-keapmuunoi mooeni Jlaxuimanana—
Topcesiana—/{aniens. Pozensinymo uwienu 30ypeHHs, WO BUHUKAIOMb i3 GUMOSU 2SPAHUYHO
donycmumoi inmerncusHocmi. Onucano 0OMeNCeHHsl, HAKIA0eH] MIPKYSAHHAMU [HMeSPO8AHOCMI
Ha napamempu Mmooeni. Baoicnueo, wo 6ci iHwi Has6HI ananimuuHi NIOXO0U He 3MO2NU
8I0MEOPUMU  AHATIMUYHULL PO38 SI30K OJI SICKPABO20 COMIMOHA Osl OAHOI MOOeNi 3 SPAHUYHO
00nycmumor IHMeHCUGHICMIO.
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