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Abstract—This paper recovers soliton solutions to perturbed pure—cubic complex Ginzburg—Landau equa-
tion having a dozen forms of nonlinear refractive index. Two integration schemes, namely the new mapping
method and the addendum to Kudryashov’s approach have made this retrieval possible. Bright, dark and sin-
gular soliton solutions are recovered and enumerated for every nonlinear form. As a byproduct of the

schemes, periodic solutions have emerged and are presented as well.
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1. INTRODUCTION

There exists an abundance of models that govern
the dynamics of soliton propagation through an opti-
cal fiber, PCF, metamaterials or any other kind of
waveguides. While the fundamental model is the non-
linear Schrodinger’s equation (NLSE) several alter-
nate, but equally popular, models have sprung up with
time. A few of them are Radhakrishnan—Kundu—
Lakshmanan equation, Lakshmanan—Porsezian—
Daniel model, Schrodinger—Hirota equation, Gabi-
tov—Turitsyn equation, Fokas—Lenell’s equation,
complex Ginzburg—Landau equation (CGLE)
[1—18], and many more. These are well known models
for polarization—preserving fibers. Similarly, in bire-
fringent fibers, there exists several popular models that
study split pulses and a couple of them are Manakov
equation and Thirring’s model. On the other hand in
(2+1)-dimensions, an alternate model to study optical
dromions would be the recently proposed Kundu—
Mukherjee—Naskar equation. For every such model,
and every single situation, the basic governing dynam-
ics for soliton propagation is the existence of a delicate
balance between chromatic dispersion (CD) and self—
phase modulation (SPM).
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A preposterous consequence can occur, during
fiber optic pulse transmission, when CD runs low.
Many forms of technological backup plans have been
proposed and implemented to circumvent this crisis
situation. One proposal is the introduction of Bragg
gratings with dispersive reflectivity that can compen-
sate this low count of CD. Another approach was the
introduction of pure-quartic solitons that came up
during 2016 [19]. Here, CD is replaced by fourth—
order dispersion (40D). The drawback for such a
model is that it can only be studied numerically and
one can only retrieve stationary optical solitons ana-
Iytically for pure-quartic NLSE. Thus, pure-quartic
solitons never gained popularity as an alternative
model to address this crisis situation. Subsequently,
the concept of cubic—quartic (CQ) solitons have
emerged where third—order dispersion (30D) and
40D together replaces CD [20—26]. This concept had
picked up momentum and a flood of analytical results
have started pouring in.

Yet another alternative, but similar, concept has
been proposed during 2019 to salvage this crisis situa-
tion. The concept of pure-cubic (PC) solitons was
introduced during 2019 [27, 28]. Here, CD is replaced
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only with 30D unlike CQ solitons. One feature with
PC solitons is that it is necessary to include a few
Hamiltonian perturbation terms for the governing
model to be solvable. NLSE with 30D, replacing CD,
is not rendered to be integrable. Later, several papers
have started streaming with this new evolving concept
[29—31]. The current paper will study PC solitons with
CGLE as its platform. The perturbations terms are all
of Hamiltoniantype where the nonlinear ones are con-
sidered with maximum intensity. A dozen forms of
SPM that stems out of nonlinear refractive index are
studied. Two integration schemes are implemented to
secure bright, dark and singular soliton solutions to the
model. The details are enumerated and the soliton
solutions are exhibited in the rest of the paper after a
quick intro to the governing model along with two
integration algorithms.

1. 1. Governing Model

The dimensionless form of PC CGLE with Hamil-
tonian perturbation terms is written as:

‘ 2

iq, +iaq,,. + F(|q|2)q _ a%
B |: 2 12\ P 2:|
Hafq Zaf(aF’), ((Z )} +7q (1)

+ I[qu +Mla"g) +ua") a+ qulz'"qx}

provided |g| # 0. Here a, o, B, v, 8, A, L and v are
real—valued constants, while m represents parameter

of maximum intensity with i = J=1. The first term
represents linear temporal evolution, a is the coeffi-
cient of 30D effects, the functional F represents a
general form of the intensity dependent refractive
index. The terms due to o, B and v are from the per-
turbation effects; in particular, Y comes from the
detuning effect. Next, o is the coefficient of inter—
modal dispersions (IMD) and the parameter A gives
the self-steepening (SS) term that avoid the formation
of shock waves. Finally @ and v stand for the coeffi-
cients of nonlinear dispersion. Here, the dependent
variable g = g(x,r) represents the complex-valued
wave profile, while ¢ (x, 7) is its conjugate, while x rep-
resents the non-dimensional distance along the fiber
and ¢ represents the time in dimensionless form. The
functional F gives the range of nonlinear refractive
index structures.

Equation (1) is a manifested version of the standard
model that governs the propagation of soliton mole-
cules through optical fibers across trans-oceanic and
trans-continental distances. This is the well known
NLSE, with CD, that is structured as:

ig, +aq,. + F (g") g =0, 2)
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where a is the coefficient of CD. In (1) for CGLE, it is
this CD that is replaced by 30D which therefore for-
mulates the dispersive effect.

The objective of this article is to locate solitons and
other solutions of Eq. (1) using two integration algo-
rithms declared earlier. It needs to be pointed out that
Eq. (1) has been studied recently, for the special case
o =P =v=0, using the method of unified Riccati
equation expansion [30, 31].

This article is organized as follows: In Sections 2
and 3, the new mapping method and the addendum to
Kudryashov’s method are revisited. In Section 4, the
mathematical analysis of Eq. (1) is displayed. In Sec-
tions 5—16, Eq. (1) is solved for twelve forms of SPM
using two algorithms as recapitulated in Sections 2 and
3. To close, Section 17 sums up the paper with a few
conclusive lines along with potential new avenues to
expand and move further along.

2. NEW MAPPING METHOD

Suppose that we have the following nonlinear evo-
lution equation (NLEE):

P(qaqxaqtvqxxﬂqttﬂ”') = 0’ (3)

where g = ¢(x,7) is an unknown function, P isa poly-

nomial in g(x, ) and its partial derivatives in which the
highest order derivatives and the nonlinear terms are
involved. The main steps of this method can be sum-
marized as follows:

Step 1. We use the traveling wave transformation
q(x,10) =U(©),
€ =1x — of,

where ¥ and ® are nonzero constants, to reduce
Eq. (3) into the following nonlinear ordinary differen-
tial equation (ODE):

4

PU,U,U",..)=0, (&)
where P is a polynomial in U(§) and its total deriva-
ti hthat' =4
ives, such tha dE

Step 2. We assume that Eq. (5) has the formal
solution

2N
UE = 5F@), (6)
=0
where F(&) satisfies the first order auxiliary ODE:
FAQ) =r+ pF' @+ hF'© + 1sF'@. ()

where d, (/ =0, ..., 2N),r, p,h and s are arbitrary con-
stants to be determined, such that s # 0.

Step 3. We determine the balance number N of (6)
by balancing the highest nonlinear terms and the high-
est order derivatives of U(§) in Eq. (5).
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Step 4. We substitute (6) along with (7) into

Eq. (5), collect all the coefficients of F™(F')
(m =0,12,...) and (j = 0,1) and set them to zero, to
get a system of algebraic equations for 9,
({=0,1,..,2N),r,p,h,s,x and .

Step 5. We solve the system of algebraic equations
obtained in Step 4, using the Maple, to find 9,
((=0,1....2N),r, p,h, s,k and .

Step 6. It is well known that Eq. (7) admits the fol-
lowing types of solutions with:

30 16p°
Type 1. If s = 22 f =
ype L 1fs =y, r =

(1) Soliton solutions:
—p tanh’ [61 /—%’ﬁj

then one recovers:

FE) =4 , (8
3h (3 + tanh’ [e\/—z’gD
and
—pcoth® (e\/jE&J
3
FE =4 , )]
3h (3 +coth’e (e\/—z’gD
provided

p<0, h>0.

p tan’ (e\/%é

(10)

(2) Periodic solutions:

—

FE&) =4 : (11)
3h (3 — tan’ (e\@ﬁjj
and
pcot2 (e\/%@j
FE)=4 ) (12)
3h (3 —cot’ (e\/%ﬁjj
provided
p>0 h<0. (13)
30
Type 2. If s = @, r =0, then one recovers dark
soliton solution:
FE) = \/‘721’(1 +tanh(efpg)), p>0, (14
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and singular solitons

FE) = \/%(1 +coth(efpg)), p>0. (19

Type 3. If » = 0, then one gets the following solu-
tions:

(1) Soliton solutions:

—6phsech’
F©) = phseeh’ (VK)o as)
3 - 4ps(1 + etanh (\/—pﬁ))
6ph h?
FO = |— pheoseeh’(Jr) 5 p>0, (17)
3n — 4ps<1 + ecoth (\/;&))
FE) = —6psech’ (\/;&)
O =53 4e3ps tanh (Jpt) (18)
p>0 s5>0,
FE) = 6pcosech’ (\/Zﬁ)
)= 3h + 4ef3ps coth (Vpt) (19)
p>0 s5s>0.
(2) Bright soliton solutions:
3 h(2
FE) =2 pesec ( \/;é) ’
VM - 3ehsech (2\/71)5)) (20)
p>0, M >0,
FE) =2 3psech’ (eﬁ;&)
oM - (\/H + 3h) sech’ (e\/;&)’ (21
p>0, h<0, s<0, M>0.
(3) Singular soliton solutions:
FE) =2 3pcosech’ (e\/;&)
oM+ (x/ﬂ—3h)cosech2 (e\/;&)’ (22)
p>0 h<0, s<0, M>0.
FE) =2 3epcosech(2\/;§)
©= N—M —3ehcosech (2\/}2)’ (23)
p>0, M<DO.
(4) The periodic solutions:
FE) = —6psec’ (\/;)EJ)
R Ev S vy v M2
p<0, 5s>0,
Vol.66 No.5 2021
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B _6pCOS(3C2 (\/__pi)
F@) = \/3;1 + 4e =3 ps cot (\/TPE:)’

p<0, 5s>0,

FE) =2 —3psec’ (e\/—_pé)
N - (W - 3h) sec’ (e\/—_pﬁ)’
p<0, h>0, s<0, M>0,

FE) =2 3pcosec’ (e\/jpﬁ)
PN («/ﬁ + 3h) cosec’ (e\/—_pﬁ)’
p<0, h>0, s<0, M >0,

B 3ep sec<2\/——p§)
Fe = 2\/«/% —3eh sec(2«/—7ﬁ_,)’
p<0, M>0,

(25)

(26)

27)

(28)

) 3€pcosec(2\/—71’§)
FE) = ZJW - 3ehCOS€C(2‘/__p§).
p<0, M>0.

(29)

Here

M =9h* —48ps and € = 1. (30)

Step 7. We substitute the values §, (/ = 0,1,...,2N),
p, h, s, x and ® as well as the solutions (8)—(30)
into (6) to get hyperbolic and periodic function solu-
tions of Eq. (5).

3. ADDENDUM
TO KUDRYASHOV’S METHOD

Recently, Kudryashov proposed a new method for
solving NLEEs. Based on this new Kudryashov’s
method, we will describe in this section the addendum
Kudryashov’s method. The main steps of this method
can be summarized as follows:

Step 1. We assume that Eq. (5) has the formal
solution

N
UE© = B R E), (31)
g=0

where B, (g =0,1,2,..., N) are constants to be deter-

mined, such that B, # 0, while R (&) satisfies the aux-
iliary ODE:

R*(E) =R E)[1-xR” (&) |In°k, 0<k =1, (32)
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where % is a constant. It is easy to show that Eq. (32)
has the following solutions:

1

44 »
447 expy (p&) +xexp, (-pE)|
where A is a nonzero constant, p is a positive integer
and exp, (p&) = k*°.

Step 2. We determine the relationship between N
and p as follows:

If D[UE)=N, D[U')]=N+p D[U"E)] =
N + 2p, consequently we have D[U (&)U m(&)} =
N (r+1)+ sp.

Step 3. We substitute (31) along with Eq. (32) into
Eg. (5), equate all the coefficients of [ R(E)]"™ [R'(&)]j ,
(m =0,1,2,...,j = 0,1) to zero, yield a set of algebraic
equations which can be solved by Maple to find the

values of B, (g = 0,1,2,..., N) and c. Consequently, we
can get the exact solutions of Eq. (5).

RE) = (33)

Note: If we set k = e (i.e. Ine =1) and p = |, then
this method reduces to the new Kudryashov’s method
reported earlier.

4. MATHEMATICAL ANALYSIS

For the traveling wave solutions of Eq. (1), the
starting hypothesis is taken to be

q(x,1) = &) expliy(x,1)] (34)
where ¢(§) and y(x, ) are real functions, such that

E=x—ct, Y(x,f)=—Kx+ of+0,, (35)

and ¢, K, and 6, are real constants. Here 0(§) rep-
resents the pulse shape which is a real function, ¢ is the
velocity of the soliton, k is the soliton frequency,  is

the soliton wave number and 6, is a phase constant.
Substituting (34) along with (35) into Eq. (1) and sep-
arating the real and imaginary parts, one gets the real
part in the form:

(3ax — B) 09" — oud'” — ((n+ ax’ + oK’ + 8K + y) ¢2(36)
+ F[07]0° = x(A+ V)™ =0,
and the imaginary part in the form:

ag" —(c+8+3ak’ )¢

—[2m+ 1)L+ 2mu+v]o™d' = 0.
By integrating of (37), one gets:
a" —(c+8+3ak’ ¢
(38)
- 2m+ DA+ 2mu +v] o™ = 0.
—L{(2m+ DA+ 2ma +V]o
Vol. 66 No.5 2021
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Integration of (38) yields to

¢(&)=exp[— M&] (39)

a

that leads to the velocity ¢ of the soliton, under the
constraint conditions
Cm+1)A+2mu+v =0,

a(c+5+ak2) > 0. (40)

Equation (39) indicates that the soliton exists if and
only if the conditions (40) are satisfied.

Now, Eq. (36) can be rewritten as:

Ag0" — 0d” — Ay0°

41
+ F(07]0° — k(A + V)™ =0, @

where
Ay = 3ax -3,
i f (42)
A, =0+ ax + oK + 0K+ .

The task now is to solve Eq. (41) using the above two

methods when the functional F (¢2j takes the follow-
ing forms.

5. KERR LAW

For the Kerr law nonlinearity, we have

F(0) = b9,

where b is a nonzero constant. The Kerr law of nonlin-
earity originates from the fact that a light wave in an
optical fiber faces nonlinear responses. Even though
the nonlinear responses are extremely weak, their
effects appear in various ways over long distance of
propagation that is measured in terms of light wave-
length. The origin of nonlinear response is related to
the non-harmonic motion of bound electrons under
the influence of an applied field.

(43)

Equation (1) corresponding to Kerr law nonlinear-
ity (43) is given by:

iq, +iaq,,, + b|q| q= (x‘qx‘
q*

om AU (NN RS TR
+118q, +Mlaf"a)_+ (") g +Via"a, |,
where Eq. (41) reduces to:
Ag00" — 0 — Ax0’ 43)

+ 00" — k(A +v)o" =0,
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For integrability, one must select m = 1. This leads to
the modification of Eq. (1) corresponding to Kerr law
nonlinearity as:

iq, +iaq,,, + b|q| q = a\qx\
q*

o b1 (), - {a0) ) [+ o
+ {qu + l(lqlzq)x + u(lqlz)xq + V|q|2qx]
Consequently, Eq. (45) becomes:
Aod0" = 09’ — A0’ @7

+[b-x(A+V)]o* =0.

In the next two subsections, we will solve Eq. (47)
using the following two methods:

5.1. New Mapping Method

According to the new mapping method, we balance

0" with ¢4 in Eq. (47) yields the balance number

N =1. Now, from (6), the solution of Eq. (47) has
the form:

®E) = 8 + 8, F () + 8,F (), (48)

where 9,,0,,0, are constants to be determined, such

that 8, # 0, while F() satisfies the first order nonlin-
ear auxiliary ODE (7). Substituting (48) along with (7)
into Eq. (47) collecting all the coefficients of

F'E[F'E)] (¢ =0,1,.8,/ =0,1) and setting them to
zero, we have the following algebraic equations:

3[b— k(A +V)]85 — 4083 + 8A,85s = 0,
12[b = k(A +V)] 8,8, + 11A,8,8,5 — 40.8,8,5 = 0,
6[b -k (h +v)] 825 + §A08082s

+ AS’s — 200850 — %ocSlzs

+ 3Agh + 4[b — k(L + V)] 6063 =0,
4705,8,h + 4{38,8,8; + 8;8,} [b — k(A + V)]
+ AyBydys — 2018,8,h = 0,

AySih + 3A08,8,h — A5,

+ {128,878, + 816 — k(A +v)] - lasfh

(49)

+ 4A,85p — 4083 p + 6[b — k(A + V)] 6282
5A08,8,p + Ay8yS,h

+12[b— k(A + V)] 88,8, — 40.8,8,p

+ 4[b -1 (A+ V)] 8,8 —2A,8,8, =0,
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— A — 408 + AgS p + 4[b — k(A + V)] 88,
—ad;p+6[b—1x(A+V)]5d;
— 20,8,8, + 2A,85F + 4A,8,8,p = O,
4[b = k(A + V)] 88, + 248,87
+ Mgy, p — 2A,8,8, — 408,81 = 0,
288,87 — ard; +[b — Kk (A +v)]8; — A8 = 0.

With the aid of the solutions (8)—(29), we have the
following types of solutions:

3w, 160
16p 27h°
algebraic equations (49) and solve them by Maple, one
gets the following results:

Type 1. Substituting s = into the

A,
% = €\/_3[1) (V)]

§,=0, 8, =R |___ B (5
20, \ 3[b—x(h+V)]
=3 hoh a=3a,
20, 2

provided A, [ — k(A +V)] <0 and e = 1.

If we substitute (50) along with (8)—(12) into
Eq. (48), then Eq. (46) has the following solutions:

5.1.1. Soliton solutions.

el A,
Q(x’t)_e\/ 3[b—1(A+V)]

4tanh’ (e —ﬂ(x—ct)] (51)
2A0 ei(—lcx+0)t+6(,)

X ] - A i
e -2 (x -
3+ tanh (e\/ o, (x ct)j
and
Ay
1) = _— s
a0 = e\/ 3[b—x(A+V)]
4 coth [ / (x - ct)j (52)

w|1— j(—1cx+mr+6;)

3+ coth [\/ 2—A20( —ct)} ’

provided A, [b — k(A + V)] <0, A)A, < Oand e = £1.
5.1.2. Periodic solutions.

_ | A,
q(x’t)_e\/ 3[6— k(A +V)]

4tan’ (e /ﬁ(x - ct)] (53)
2A0 ei(—)cx+cot+90)
3 —tan’ (e /ZA—Ai)(x - ct)j

X |1+

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS

and
A,
7t = -
4x) e\/ 3[b—x(ht V)]
scot? [e [ ct)j (54)
% |1+ 2A0 i(—1x+wr+8y)

e )
—cot? /_A2 -
3 —cot (e 7 0(x ct)j

provided A, [b — k(A +V)] < 0, AjA, > 0 and € = 1.

3
16p’°
braic equations (49) and solve them by Maple, we get
the following results:

Type 2. Substituting s = , r =0, into the alge-

8y —e|— B2
b—x(A+V)

hA
§ =0, & =-5 0/
1 ? bK(?L+v

D hoh a=34A,
24, 2

provided A, [b — k(A +V)] >0 and e = 1.

If we substitute (55) along with (14) and (15) into
Eq. (48), then Eq. (46) has the following solutions.

5.1.3. Dark and singular solitons.

a0 = \] 7» +V)

(55)

p=-

(56)
X {1 + tanh [e /——( - ct)ﬂ oo,
and
A
et =5 | —22—
246 - K(A+V) 57)

{1 + coth (8 }—— —ct) ﬂ Trrrartl)

respectively, provided A, [6 — k(A + V)] > 0, AjA, <0

and € = *1.
Type 3. Substituting » = 0, into the algebraic equa-

tions (49) and solve them by Maple, we get the follow-
ing results:

"= b K(A+v)
§,=0, 8=—Mho | B (5
47, \b—Kk(A+V)
2
p=-tr =Ml g2 la,
20, 32A, 2
Vol. 66 No. 5 2021
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provided A, [6 — k(A + V)] > 0 and € = £1. If we sub-
stitute (58) along with (16)—(29) into Eq. (48), then
Eq. (46) has the following solutions.

5.1.4. Soliton solution.

(59)

i(—xx+wr+8y)
b

x| 1—

16 - 3{1 + tanh (e\/%(x - ct)ﬂz

A,
b-x(A+v)

(60)
12cosech’ [e [—ﬂ(x - ct))
2A0 i(—1+wr+6,)
[ A 2 |° ’
— — =2 (x —
16 3{1 + coth (e o, (x ct)ﬂ

A,
b—x(A+V)

3sech? [e ’_2AT2(x - ct)j (61)
0 ei(—Kx+mt+90)

4 +23tanh (e\/—zATz(x - ct)j |

0

q(x,1) = €

x| 1+

q(x,1) =€

X |1-

A,
b—x(A+v)

3cosech’ (e /—ﬂ(x - ct)) (62)
2A0 ei(—xx+mt+90)
A, ’
4 +2V3coth [e\/ ™ (x ct)j

provided A, [b — k(A +V)] > 0, AjA, < 0 and € = 1.
5.1.5. Bright soliton.

q(x,t) =€

X |1+

A,
X1 =€|—2——
1D = & o v)]
w1+ 3 ei(—mx+mr+90)’ (63)
cosh (e\/—z—Az(x - ct)j -2
Ay
and
A,
x,t) =€ |——2——
aeen b—x(A+V)
|1+ 3 ei(—rcx+wt+e(,) (64)

o P e ’
2cosh (e\/ 2AO(x ct)) 3
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provided A, [b — k(A +V)] > 0, AjA, < 0 and € = 1.
5.1.6. Singular soliton.
A,
b—x(A+v)
3 i(—1c+wr+8)) (65)

e 5
2sinh’ (e\/—zATz(x — ct)j +3
0

provided A, [b — k(A + V)] > 0, A)A, <0 and € = *1.

5.1.7. Periodic solutions.

q(x,1) =€

X|1—-

A
b—x(A+V)

3sec’ [e fﬂ(x - ct)) (66)
2A0 i(—1oc+0r+8;)
[A ‘ ’
- 2 =2 (x —
2 -3sec (e o, (x ct))

q(x,t) =€

X |1+

Ay
x,1) =€
aee1) b—x(A+v)
2 A,
3cosec (e I(x - ct)j (67)
w1+ 2 ei(—K:x+wt+90)’
- 2e |22 (x—
2 —3cosec [e o, (x ct)j
A,
X,[) =€ [ ———
a9 b—x(A+v)
3sec(e f%(x - t)j (68)
% |1+ 0 ei(—m+mt+eo),

T

A,
b—x(A+vV)

3cosec (e /%(x —ct)
A0 ei(—Kx+mt+eo)
1 —2cosec [e /Z—Az(x - ct)j
Ay

provided A, [b — k(A +V)] > 0, AjA, > 0 and € = 1.

q(x,t) =€

(69)

N—

X |14+

5.2. Addendum to Kudryashov’s Method

According to this method, we balance ¢¢" with ¢’
in Eq. (47), one gets the relation:

2N +2p=4N = N = p.

Now, we will discuss the following cases:

(70)
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Case 1. If we choose p =1, then N =1. Thus, we
deduce that from (31) that Eq. (47) has the formal
solution:

O (8) =By +BIRE), (71)

where B, and B, are constants to be determined, such
that B, # 0 and the function R(§) satisfies the auxil-
iary ODE (32). Substituting (71) along with (32) into
Eq. (47), collecting all the coefficients of each power

of [RE)|™ [R'(é)]j, (m =0,1,2,...,4, j =0,1) and set-
ting each of these coefficients to zero, one gets the fol-
lowing set of algebraic equations:

afiyIn’ k — 2A,BixIn’ k +[b — k(A +V)]B =0,
4[b =k (A +V)IBoBI - 2ABBox In” k =0,
66— 1 (%+V)]BB:
—afiIn’k —AB; + AP In” k =0,
AgBiBo In® k — 2A,8,B, + 4[b - k(A +v)] BB = 0,
[6—x(A+V)IB; — A5 = 0.

On solving the above algebraic Egs. (72) by using the
Maple, one gets the following results:

B=0 B e (A, + A, In" k)
TN b—x(h+v)

A, + Ay Ink
o=——-—
In" k
provided (A2 +AgIn’ k)[b -k(A+V)]x>0 and
€ =1l1.

Substituting (73) along with (33) into Eq. (71), one
gets the solutions of Eq. (46) in the form:

(A, +AgIn’ k)
=

(72)

(73)

(74)
% 44 i(—toc+r+8,)
e .

LAz expy [(x —ct)] + xexp, [-(x — ct)]}

In particular, if we set x = 44% in (74), then we have
the bright soliton solution of Eq. (46) as:

A, + Ay In’ k
b—x(A+v)

x sech[(x — cr)In k"),

q(x,t) =€ (75)

while, if x = —4A2, one gets the singular soliton solu-

tion of Eq. (46) as:

A+ A Ik
b—x(A+v)

x cosech [(x — cr) In k'™,

q(x,t) =€ (76)
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Case 2. If we choose p =2, then N = 2. Thus, we
deduce that from (31) that Eq. (46) has the formal
solution:

0 (&) =By + BRE) +B,R*©),

where f3, 3, and 3, are constants to be determined, such
that B, # 0 and the function R (&) satisfies the auxiliary
ODE (32). Substituting (77) along with Eq. (32) into
Eq. (47), collecting all the coefficients of each power of
[RE]™ [R'E)], (m, =0,1,2,...8, j = 0,1) and setting
each of these coefficients to zero, one gets the follow-
ing set of algebraic equations:

(77)

[b— k(L +V)]B5 — 8ABsx In” k + 4oy In’ k = 0,
4[b - k(A + V)]
+ doyBB, In” k —11ABB,x In" k =0,
afiyIn’ k + 4[b—x(A+V)] B.B>
— 3ABrxIn” k — 8ABBx In” k
+6[b =K (L +V)IBB; =0,
= 3A.B:Box In’ k + 12[6—x (A +V)] BOBIB%
+4[b—x(A+V)]BB, = 0,
— APy +6[b— k(A +V)]BoB;
+[b—x(A+V)]B! — 40> In’ k + 4A,B; In’ k (78)
+12[b = (A +V)]BoBiB, =0,
4[b = k(A +V)]BiB) — 40BB, In” k
+ 5AB,3, In® k — 2A,B,8,
+12[b =K (A+V)]BiBB, = 0,
4ABB, In” k — op; In” k
+ A In’ k +4[b— k(A + V)] BB,
+6[b—x(A+V)] BoBT — 2A,B0B, — AT =0,
AoBiBy In’k - 20:BoBy +4[b — k(X + V)] B(S)Bl =0,
— AP +[b—x(A+V)]B; = 0.

On solving the above algebraic Eqgs. (78) by using the
Maple, one gets the following results:

Bo=0’ 31:0,
A, +4A,In* k
Bz=€\/( 2 + 48 In” ) (79)

b—x(A+V)
oot 4%0 In’ k
41n’ k
provided (A, +4A,In*k)[b—x(A+V)]x >0 and

e ==1.

Vol. 66 No.5 2021



PURE-CUBIC OPTICAL SOLITON PERTURBATION

Substituting (79) along with (33) into Eq. (77), one
gets the solutions of Eq. (46) in the form:

e (A, +4A,In” k )y
e b—x(A+V)

44

X
LAz expy [2(x —ct)] + xexp, [-2(x —ct)]
% ei(—xx+wt+60)

(80)

In particular, if we set x = 44% in (80), then we have
the bright soliton solution of Eq. (46) as:

ef) = A, +4A,In° k
T\ b K(?\,+V)

(—1x+or+8;)

x sech[2(x —ct)Ink]e ,

(81)

while, if x = —44 , one gets the singular soliton solu-
tion of Eq. (46) as:

A, +4A,1n’ k
b—x(A+v)

x cosech [2(x — cf) In k] e’ ™%,

Similarly, we can find many other solutions by choos-
ing other values for p and N .

q(x, t) =& (82)

6. POWER LAW
For the power law nonlinearity, we have

F(0) = 59", (83)
where b is a nonzero constant. Such a situation is com-
monly visible in nonlinear plasma that addresses the
problem of small K -condensation with weak turbu-
lence theory. In this case, it is necessary to emphasize
0 < n < 2 for preventing collapse of waves and in par-
ticular n # 2 in order to avoid self-focusing singularity.

Equation (1) corresponding to power law nonlin-
earity (83) is given by:

2
iq, +iaq,,, + b|q|2"q = OL@

2
i ) ) e s
+ I[qu + %(IqIqu)x + u(lqlm)xq + qulqu}
where Eq. (41) reduces to:
Agpo” — ag” — A9° (85)
+ 60" — k(A +Vv) 0™ = 0.

For integrability, one must select n = m. This leads to
the modification of Eq. (1) corresponding to power
law nonlinearity as:
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iq, + iaq,. + blg["q

e 2~ () 2

+ i [qu +Mla"g) +ua") a+ qulz'"qx]
Consequently, Eq. (85) changes to:
A" — 0> — Ayd® +[b— k(A + V)]0 =0. (87)
Balancing ¢¢" and ¢*"** in Eq. (87), gives the balance

%k

(86)

number N = l. Since the balance number is not inte-

m

ger, then we take into consideration the transformation
1

o©) =[UE)]n, (88)

where U () is a new positive function of & Substitut-
ing (88) into (87), we have the new equation

mAUU" — [0+ (m—1)A, U™
- m’ AU +m’ [b—x(L+V)]U* = 0.

In the next subsections, we will solve Eq. (89) using
the following two methods.

(89)

6.1. New Mapping Method
According to the new mapping method, we balance

UU" withU* in Eq. (89) yields the balance number N = 1.
Now, from (6), the solution of Eq. (89) has the form

UE) =8 +§FE) +8,F @), (90)
where 9,,0,,0, are constants to be determined, such

that 9, # 0, while F(&) satisfies the first order nonlin-
ear auxiliary ODE (7). Substituting (90) along with (7)
into Eq. (89) collecting all the coefficients of

F'E[F'E)] (¢ =0,1,..8,j =0,1) and setting them to
zero, we have the following algebraic equations:

—3m*8i[b — k(A + V)]

+ 401585 — 4AmBas — 4A,58; = 0,
—7Aymd,8,5 — 4A(59,5,
—12m°8,8, [b — k(A + V)] + 40.8,8, = 0,
—4m’8,8; [b - K(?x +v)] - 6m’8;

x [b—1x(L+V)]S; - A0m8082s 3 Las82 1)

- EAOmS1 s — Agm3h

— AN + 2048 + %asaf =0,
—Aymdy0,s — 2A,md,0,h
— 12m°8,8, [b — k(A + V)] & — 2A,h8,3,
+ 200h8,8, — 4m’8; [b — k(A + V)], = 0,
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-%thsf + A, — St [b— k(A +V)]

— 3Am8 8,1 + %ochéif — 12m*8,8% [b — k(A + V)],
—%Aom&zh — 4A, P
+ 40pd; — 6m’S; [b— k(A +V)]85 =0
40,pd,0, — Aymd,0,h — Aymd,0, p
+2m°8,8,A, — 4m’8,8, [b — k(A + V)]
—12m°85 [b — k(A + V)] 8,5, — 4A,p8,, = 0,
M8 A, — 4ArSs + 40urd; + opd;
+ 2A,m&or — Aypd; — 4A,mS,S, p
—6m’8; [b — (A + V)] 8} + 2m°8,3,A,
— 4m’8y[b - k(A +V)]3, =0,
—Aymdy0,p — 4A,r9,0, + 40rd,0,

— 4m’8y[b — k(A + V)],
+2m’8,8,A, + 2A,md,8,r = 0,
—2AmBo S, + Agmrd; — m*Sg[b— k(A + V)]
— A& + oS + m*SA, = 0.

With the aid of the solutions (8)—(29), we have the
following types of solutions:

3w, _16p°
16p 27h°
algebraic equations (91) and solve them by Maple, one
gets the following results:

Type 1. Substituting s = into the

A,
% = e\/_3[b (A V)]

hA A
§ =0, 8 =20 | 2 : 92
‘ 2 2mA2\/ 3[6— k(L +V)] ©2)
:3mA2, hzh, OL=(1+lm)AO
20, 2

provided A, [b — k(A +V)] <0 and e = 1.

If we substitute (92) along with (8)—(12) into
Eq. (90), then Eq. (86) has the following solutions:

6.1.1. Soliton solutions.

. A,
9061 = e\/ 3[b—x(A+V)]

1
4tanh’ (e ’_mAz (x - ct)] "
2AO ei(—xx+wt+eo)
2 _mAz _ ’
3+ tanh [e\/ o, (x ct)j

93)

X|1—
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and
A,
X,
o0 = \/ 3[b— k(A +V)]
1 (94)
4coth2( ngAz —ct "
x|1= 0 Kx+(1)t+60

3+coth(\/ 2(x—ct

provided A, [b — k(A + V)] < 0,A,A, < 0 and € = £1.
6.1.2. Periodic solutions.

b—x(A+v)]
1 95)
4tan’ (e I’;TAz(x —ct) "
w11+ Z 1(—Kx+mr+eo),
—tan?| e [M22 (5 -
3—tan [e\/zAO (x ct)}
or
A,
)= e -
a0 e\/ 3[b—x(A+V)]
L (96)
4cot’ (e ’mAz (x - ct)) !
|1+ 2A0 i(—1x+wr+6,)

e ,
_cot?] e [MAay _
3 —cot (e\/z ; (x ct)J

provided A, [b — k(A +V)] <0, AjA, > 0 and € = 1.

30
16p°
braic equations (92) and solve them by Maple, we get
the following results:

Type 2. Substituting s = , ¥ =0, into the alge-

60: —A2
b—x(A+v)
8 =0, 8 =M & o)
2mA, \[b — k(A + V)]
p=-T oy oc:(1+lm)A0,
24, 2

provided A, [6 — k(A + V)] >0 and e = 1.

If we substitute (97) along with (14) and (15) into
Eq. (90), then Eq. (86) has following solutions.
Vol. 66
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6.1.3. Dark and singular solitons. Type 3. Substituting » =0, into the algebraic
A Egs. (92) and solve them by Maple, we get the follow-
gix,f)=4¢ —=2 ing results:
2\b—-x(A+v)
98
( ) 80 =€ A2 > 6l = O’

s =2
X {1 + tanh (e f—’ZAAz (x - ct)ﬂ}m e[(7m+wt+9°), b-x(A+v)
0
and §,=—¢M | B0, mh ()

A 9n*A 1
q(x,t)={g /—2 §=— O h=nh ocz(l——m)A
2\b-xk(A+v) 32mA,’ ’ 277"

1 99)
« [l + coth [e f_m_Az(x 3 ct)ﬂ}m piwrroren) provided A, [b — k(A + V)] >0 and € = *1.
27, If we substitute (100) along with (16)—(29) into
respectively, provided A, [6 — k(A + V)] > 0, AyA, < 0 Eq. (90), then Eq. (86) has the following solutions.
and € = 1. 6.1.4. Soliton solution.

3=

12sech’ (e /—mTA2(x - ct)J
A2 1— 2 0 . ei(—»cx+mr+90)’ (101)
b—x(A+vV) mA
16 = 3|1+ tanh| €, |——2(x — c?)
24, |

q(x,1) =€

3 |-

12cosech’ (e ’_mAz (x - ct)j
q(x, t) —Je A2 1+ 2A0 _ ei(—Kx+mt+90)’ (102)
b—x(A+V) 16-31 N mA, :
_ -3/ 1+cot e—2A0(x—ct)__
- -4
n 3sech’ (e f—';AAZ (x - ct)j !
q(x’ l‘) —Je 2 1— 0 el(—Kx+mt+90), (103)

b=x(h+v) 4 + 23 tanh (e\/— ’;AAz (x— ct)j

3=

3cosech’| e _mh, (x —ct)

A 2A0 i(—1oe+0r+8,)

q(x,t) = <€ 5 i 1+ e b (104)
~K(A+v) 4 +2J3coth [e\/— A, (x— ct)}

provided A, [b — k(A + V)] >0, A)A, <0 and € = +1.
6.1.5. Bright soliton.

1
g(x, 1) = |e p Ai 1+ 3 mei(—mx+mt+eo)’ (105)
0
and
1
i) = Je s+ ’ e, (106)
~ k(A +v) 2cosh’| e —m—A2(x—ct) -3

provided A, [b — k(A + V)] > 0,A)A, < 0 and € = £1.
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6.1.6. Singular soliton.

Ay

3 m ei(—lcx+u)t+60)’ (107)

q(x,t) = |€ 1-

b=xA+V)l Hinn? (e\/

provided A, [6 — k(A + V)] >0, AjA, <0 and e = 1.
6.1.7. Periodic solutions.

A 1+

mA,
A (x ct)j +3

0

q(x,1) =€

b_KOH_V) 2—38602(6\/

A, 1+

q(x,t) =<€

A

b—wx(A+v)l | _ 2sec(e\/2XA2 (x - C’)j

q(x,1) =€ 1+

provided A, [b — k(A +V)] >0, AjA, >0and e = 1.

6.2. Addendum to Kudryashov’s Method

According to this method, we balance UU" with U 4
in Eq. (89), one gets the relation:
2N +2p=4N = N = p.

Now, we will discuss the following cases:

(112)

Case 1. If we choose p =1, then N =1. Thus, we
deduce that from (31) that Eq. (89) has the formal
solution:

U (E) =By +BiRO),

where 3, and B, are constants to be determined, such
that B, # 0 and the function R(§) satisfies the auxil-
iary ODE (32). Substituting (113) along with (32) into
Eq. (89), collecting all the coefficients of each power
of [RE)|™ [R'(é)]j, (m =0,1,2,...,4, j =0,1) and set-
ting each of these coefficients to zero, one gets the fol-
lowing set of algebraic equations:

(113)
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b=k +V) 1- ZCosec£e\/2XA2 (x - ct)j

1
3sec’ [e /r;TAz(x - ct)j " ‘
0 ez(—xx+wt+eo), (108)
mA,
2—A0(x - ct)j
3cosec’| € ma, (x —cp) "
2A, Qo) (109)
b-x(A+v) 2 —3cosec’ [e\/’;TAz(x - ct)j
0
3sec (e 2rZA2 (x - ct)j "
0 ei(—mx+mt+90), (110)
0
3cosec| € ZmA, (x —ct)
Ay i(—x+wr+6y)
Y (111)
0
ABimy In® k — Brogy In® k
+ A In’ k —mB [6 - k(L +V)] =0,
—4m’ByB; [b — k(A + V)] + 2ABmPyx In’ k = 0,
—om By (b - k(A +V)IB; +prain’k

+ mBA, — AP In’ k =0,
4m’By [b - k(L + V)],
— ABimP,y In” k + 2m*BP,A, = 0,
—m’By [b — k(A + V)] + m’BiA, = 0.

On solving the above algebraic Egs. (114) by using the
Maple, one gets the following results:

5 0 B (mA, + Ay In’ k)
= y = e o
’ : m[b - k(A +V)]

-m’A, + Ay In* k

o=
In® k

provided (mA, +AgIn’k)[b— k(L +V)]x >0 and
€ ==1.

(115)

b
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Substituting (115) along with (33) into Eq. (113), one gets the solutions of Eq. (86) in the form:

~ \/(mAz + A, In’ k) X 44 " i(—tox+0r+6,)
q(x,1) = \€ e :
mlb— (4 V)] | 44” expy [(x — )] + X expy [ (x — 1)

(116)

In particular, if we set = 44%in (116), then we have the bright soliton solution of Eq. (86) as:

2 m
q(x,t) = {e\/ mhy + A Ik o oh [(x—ct)In k]} o/l rerey),

mb—x(A+V)]

(117)

while, if x = —4A2, one gets the singular soliton solution of Eq. (86) as:

2 -
q(x,1) = { \/— My + Do Ik oech [(x —ct)In k]} el Tt

mlb—x(A+V)]

Case 2. If we choose p =2, then N = 2. Thus, we
deduce that from (31) that Eq. (89) has the formal solution:

0 (8) = By + BIRE) + B,R*(©), (119)

where 3, 3, and 3, are constants to be determined, such
that 3, # 0 and the function R () satisfies the auxiliary

(118)

ODE (32). Substituting (119) along with Eq. (32) into
Eq. (89), collecting all the coefficients of each power of
[RE]™ [R'E)], (my = 0,1,2,...8, j = 0,1) and setting
each of these coefficients to zero, one gets the follow-
ing set of algebraic equations:

4A0x B In” k — 4oy P; In’ k — m’B3 [b — k(A + V)] + 4A;mByy In” k = 0,
TABmByy In® k — 4oy BB, In” k — 4m’BB5 [ — k(A + V)] + 4AxBB, In” k =0,
ABixIn® k + 8AgmByByx In’ k + 2A,Bimy In’ k — 6m’B; [b — k(A + v)]B;

— BrogIn® k — 4m’BB5 [b — k(A + V)] = 0,

—4m’B)[b = k(L +V)]B, + 3ABmBox In” k — 12m" B, [ — k(A +V)]B3 =0,
—12mBoBy [ = k(A + V)], + m*BrA, —6m’By[b = k(A +V)]B;

On solving the above algebraic Egs. (120) by using the Maple, one gets the following results:

Bo=0, B, =0, Bz=€\/<

provided (mA, +4A In” k)[6 — k(A +V)]x > 0 and € = *1.
Substituting (121) along with (33) into Eq. (119), one gets the solutions of Eq. (86) in the form:

—m’By [b— k(A + V)] + 405 In” k —4AB; =0, (120)
—4AB,B; In’ k — AgBmPB, In® k + 40B,B, In” k + 2m”B,B,A, — 12m’Bg [b— k(L + V)] BB,
— 4m’BB; [b — k(A +V)] =0,
m’BiA, — 6m’By [b — k(A + V)|B; + 2m°BePrA, — 4AgmPyP, In k + Biovln’ k
—4m’By[b — k(A +V)]B, — ABi In’ k = 0,
_4’"2[3(3) [6—x(A+V)]B, — ABmB, In® k + 2m2B0B1A2 =0,
—m’By[b— k(A + V)] +m’BiA, = 0.
mA; + 40 I k)X A, 44, In?k (121)
m[b—x(A+v)] 41n’ k
mA, +4A, In> k "
g(x,1) = e (s + 48 In” ) . 44 ) (122)
mlb—x(A+V)] |44%exp, [2(x — ct)] + yexp, [-2(x — ct)]
Vol.66 No.5 2021
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In particular, if we set = 44% in (122), then we have the bright soliton solution of Eq. (86) as:

e =1e mA2+4A01n2ksec
’ m[b—x(A+V)]

while, if y = —4A2, one gets the singular soliton solution of Eq. (86) as:

2 ; A
q(x,t) = {e\/— mAy + 44, In” k cosech[2(x —ct)In k]} oo,

m[b—x(A+V)]

Similarly, we can find many other solutions by choos-
ing other values for p and N .

7. PARABOLIC LAW

For the parabolic law nonlinearity, we have

F(0) = b0 + by,

where b and b, are constants such that b, # 0. Para-
bolic law nonlinearity arises in the context of plasma
physics to study the nonlinear interaction between
Langmuir waves and electrons and describes the non-
linear interaction between the high frequency Lang-
muir waves and the ion-acoustic waves by pondermo-
tive forces.

(125)

Equation (1) corresponding to parabolic law non-
linearity (125) is given by:

2
iq, +iaq,., + (b1|q|2 + b2|q|4)q = a%
B [2| 21 2 2\ 12
q{la) —lla) ; [+va  (126)
+118g,+Ma"a)_+wu(la™") g +VIa"a.],
where Eq. (41) reduces to:
Agd0" — a9’ = A0’ (127)

+ 50" — k(A + V)" +5,0° = 0.

For integrability, one must select m = 1. This leads to
the modification of Eq. (1) corresponding to parabolic
law nonlinearity as:

2
0.+ (Bl + bl = o
B l: 2 2 _ 2 2:|
Hala* 24 (|q| )xx {(IQI )} +vq (128)

+ i{qu + 7»(|q|2q)x + u(|q|2)xq + v|q|2qx}
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h[2(x—ct)In k]} g/ erél). (123)
(124)
Consequently, Eq. (127) changes to:
" 12 2
Agdd" — o Ayd (129)

+[b = k(L + V)]0 +5,0° = 0.
Balancing ¢¢" and ¢6 in Eq. (129), gives the balance

number N = =. Since the balance number is not inte-

N [—

ger, then we take into consideration the transformation

1
0 =[UEO, (130)
where U () is a new positive function of &. Substitut-
ing (130) into (129), we have the new equation

200U — (00 + Ay ) U= 4A,U°
+4[b —x(A+V)|U° +4bU* = 0.

In the next two subsections, we will solve Eq. (131)
using the following two methods.

(131)

7.1. New Mapping Method
According to the new mapping method, we balance

UU" with U” in Eq. (131) yields the balance number

N =1. Now, from (6), the solution of Eq. (131) has the
same formal solution (90). Substituting (90) along
with (7) into Eq. (131), collecting all the coefficients of

F'E[F '(?;)]j (/=0,1,...8 j =0,1) and setting them to
zero, we have the following algebraic equations:

—3Ays83 + 0583 — 36,83 = 0,
_6A0S5182 + gOCS&SZ - 16b2816; = 0’
— 4[h - k(L +V)]8 + 2048
—%A(,SOst — 4AhS - 245,878 = 0,
—165,8:8, — 12[b, — k(A + V)] 5,82
— 485,8,8,85 — 2A,8,8,s
+20(h5162 - 6A0h6]62 = 05
—485,8,578, — 12[b, — k(A + V)] 875,
+ 40,82 - %thaf — 6A08,8,/1 — 4b,5;
Vol. 66
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—12[b — k(A + V)] 8,85 — 4A,pS5;
+ %och&z — 245,533 + 4opd; = 0,

—165,8,8; + 40pd,8, — 485,8:8,8,

— 4[5 - k(L +V)]8 +8A,8,8, — 6A,p5,5,
=24[b — k(A +V)]8¢8,8, — 240,02 = 0,
40rS; + opd; + 4A,8; — Ay pd;

+ 8A,8,8, — 12[b, — k(A + v)] 538, — 165,8,5,
—12[b — k(A + V)] 8,8; — 245,858, —

40r9,0, + 8A,0,0, — 2A,0,0, p
—12[b — k(A + V)] 8§38, — 165,58, = 0,
—4As8,8,r — 4[b — k(A + V)] &,

— 4,8y + 4,80 + Ay, + ard; = 0.

(132)

8A08082p = 0,

7.1.1. Soliton solutions.

With the aid of the solutions (8)—(29), we have the fol-
lowing types of solutions:
o 3h 16 p2
Type 1. Substituting s = 16p ,F = 75
algebraic Eqgs. (132) and solve them by Maple, one gets
the following results:

into the

20,

8= -2 § =0,
’ 3[b — k(A + V)] l
hA 6A
8, = - 0 . p=-=2, h=h (133
2T TRV P A, (133)
5 =_9[b1—1<(7»+v)]2 oo 3A
? 4A, ’ 27"

provided b — k(A +V) # 0 and A, # 0.

If we substitute (133) along with (8)—(12) into
Eq. (90), then Eq. (128) has the following solutions.

1
2
4tanh’ (e /—A(x - ct)j
_ 2A2 A0 i(—1x+wr+6,)
q(x,1) = Y " 1- oA ; (134)
(b =K+ V)] 3 + tanh’ [e\/——z(x - ct))
A,
and
1
A 4 coth [ / 2A2 —ctj ’
i(—1oc+0r+8;)
q(x,1) = 1= 2 - e , (135)
3[b1_K(7L+V)] 3+ coth ( \/ 2A2 —ctj
Ao
provided A, [ — k(A + V)] < 0,A)A, <0 and € = *1.
7.1.2. Periodic solutions.
2
4tan [e ZA—Az(x - ct)j
q(x’ I) _ _3 2A2}L 1+ 0A ( Kx+0)f+90)’ (136)
(6 =K+ V)] 3—tan (e Q( —ct)J
A,
and
1
2
4cot’ (e %(x - ct)j
q(x’ f) _ _3 p 2A27\’ 1+ 0 e( Kx+0)f+60)’ (137)
b = k(A +v)] 3—cot2(e %(x—ct)j
A,
provided A, [ — k(A +V)] < 0,A,A, > 0 and € = 1.
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3n’
16p’°
braic Egs. (132) and solve them by Maple, we get the
following results:

Type 2. Substituting s = r = 0, into the alge-

2A
6 2_—27 :05
T bh—k(h+v)
hA 2A
§y= 0 p=-Z22 o (138
2 4[b —x (A + V)] P A, (138)
2
b2:3[b1—1;ik+v)]’ a:%AO,
2

ELSAYED M. E. ZAYED et al.

and
A,
b —x(A+V)

1
. [1 + coth [ \/TAA( . )H} an—
0

respectively, provided A, [5 — K(A + V)] < 0,A)A, <0
and € = 1.

Type 3. Substituting » =0, into the algebraic
Egs. (132) and solve them by Maple, we get the follow-
ing results:

q(X, t) = {_
(140)

6A,

provided b — k(A +V) # 0,A, # 0 and A, # 0. Sy =—2—, §, =0,
i . . b —x(A+V)
If we substitute (138) along with (14) and (15) into 5
Eq. (90), then Eq. (128) has the following solutions. 5. = 3hA, _28 3h°A, (141)
2 D) - ’ - D)
7.1.3. Dark and singular solitons. 4[b — (A + V)] Ay 324,
[ — k(A + V)]
qonn =l-—L2 h=n b =KL 1y
Th—x(htv 364, 2
1 (139)  provided b — k(A +V) # 0,A, # 0 and A, # 0.
1+ tanh| e |— 2 “"*"’”90 If we substitute (141) along with (16)—(29) into
Eq. (90), then Eq. (128) has the following solutions.
7.1.4. Soliton solutions.
1
2
2sech’ (e /&(x - ct)j
_ 6A2 A() i(—kx+wr+8))
q(x,t) = 1- Sl e , (142)
b —x(A+V) A
4 —|1+ tanh| e |=Z2(x —ct)
1
2
‘A 2cosech’ (e /%(x - ct)j
g(x,1) = 2 1+ 0 . el(—KZX+(1)t+90)’ (143)
b—x(A+V) A
4 —|1+coth| e [==2(x —ct)
_ 1
sech’ (e f%‘z(x - ct)j ’
a(x. 1) = - 3A}2L 5 0A ei(—lcx+mt+90), (144)
=K +V) 1+ tanh| e fh(x—ct)j
_ -1
2
cosech’| e /%(x - ct)j
q(x’ t) — p 3A}i 24 0 ei(—lcx+mt+eo), (145)
1= k(A+) 1+coth|e I%(x—ct)j
provided A, [ — k(A + V)] > 0,A,A, > 0and e = 1.
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7.2. Addendum to Kudryashov’s Method

According to this method, we balance UU" with U 4

in Eq. (131), one gets the relation:
2N +2p=4N = N = p.

Now, we will discuss the following cases:

Case 1. If we choose p =1, then N = 1. Thus, we
deduce that from (31) that Eq. (131) has the same for-
mal solution (113). Substituting (113) along with (32)
into Eq. (131), collecting all the coefficients of each

power of [RE)]" [R'E)], (m =0,1,2,...,.4, j = 0,1)
and setting each of these coefficients to zero, one gets
the following set of algebraic equations:

(146)

3A,1n° k

Po = 20 - k(A + V)]

provided y > 0,[5 — k(A + V)] # 0,A; # 0 and € = £1.

B, = 3eAg2x In” k
ol —x(A+ V)]

497

—aBryIn’ k +3ABryIn’ k — 46,8 =0,
—4[b — k(A +V)]B] + 4ABByx In” k — 165,B,8] = 0,
ofy In” k —12[5 — k(A + V)] BeBr
+ 4AB7 — AP In® k —24b,BB; = 0,
8A2BOBI - 16sz(3)B1 - 2AOBIBO 1n2 k
—12[4 — k(A + V)]BiB =0,
—4b,By — 4[b — k(A + V)] +4AB; = 0.

(147)

On solving the above algebraic Egs. (147) by using the
Maple, one gets the following results:

o= _AOs

7t =3
a0 { 2[5 -k (h+)]
provided A, [ — k(A +V)] <0, < 0 and € = 1.

q(-xa t) = {_

Case 2. If we choose p =2, then N = 2. Thus, we
deduce that from (31) that Eq. (131) has the same formal
solution (119). Substituting (119) along with Eq. (32) into
Eq. (131), collecting all the coefficients of each power of

o \ 5 (148)
- +
Az = _AO 1n2 k, b2 = [ L K( ) V)]
9A,In" k
Substituting (148) along with (33) into Eq. (113), one gets the solutions of Eq. (128) in the form:
2 2
3A,In’ k . 4eA2y lrwcrarsan) (149)
44" expy [(x — ct)] + yexpi [-(x = ct)]
In particular, if we set x = 44%in (149), then we have the bright soliton solution of Eq. (128) as:
1
2 2,
BTk [1+eV2sech[(x —ct)Ink][; &%) (150)
b —-xk(A+V)
—48b,B,B1B, + 4aB In’ k — 4AB5 In” k
= 1206 = (% +V)]BoB; — 240,83
1205 - k(A4 V)IBB, + 403, —4bB; =0\

[RE]™ [RE), (m, =0,1,2,...,8, j = 0,1) and setting
each of these coefficients to zero, one gets the follow-
ing set of algebraic equations:

—4oyBaIn’ k + 12A,xB5 In” k — 4b,B3 = 0,
—166,3,8; — 4oy BB, In” k

+ 18APB, In k =0,

—24b,B1B; +16A,B,B,x In” k

+ 5ABiyIn’ k —4[b — k(L +V)]B>
- 161’2[30[3; - ‘15127(1“2 k=0,
—48b,8,8,8; — 165,38, — 12 [b — (A +V)] BB

+ 6ABBoxIn’ k =0,

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS

40,8, 1n> k — 24 b — k(A +V)]BBiB,

+ 8ABB, - 481’23(2)[31[32 — 6ABB, In’ k
—4[b = k(A +V)]B] —166,8.B) =0,

_16b2[3(3)[32 —12[ = x(A + V)] B(z)Bz
— 125 =k (h +V)]BB; — AB; In” k — 245,37
+ 4AB7 + 8ABB, — 8ABB, In” k + af; In* k =0,
8ABB, — 165,833, — 2488, In” k
—12[h - k(A +V)]BiB; =0,
—4[h — k(A +V)]B; — 4b,B; + 4A,B; = 0.

On solving the above algebraic Egs. (151) by using the
Maple, one gets the following results:
Vol. 66
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6A, In” k

By = - g

b —x(A+v)

o=-A, A, =-4A,In’k,

provided y > 0,[5 — k(A + V)] # 0,A) # 0 and € = £1.

6eAgy2y In” k
0, Bp="7——

ELSAYED M. E. ZAYED et al.

b

b—x(A+v)

_[b—x@+v)I
187, I’k

(152)
b,

Substituting (152) along with (33) into Eq. (119), one gets the solutions of Eq. (128) in the form:

4ed\2y

2
B (- 1 2 PO
b—x(A+v)

provided Ay [ — k(A +V)] <0 and e = 1.

2 ei(—lcx+mt+eo)
447 exp, [2(x — ct)] + xexp, [<2(x = ct)] ’

(153)

In particular, if we set = 44% in (153), then we have the bright soliton solution of Eq. (128) as:

2
axf) =1- 6A,In" k
bh—-x(A+v

Similarly, we can find many other solutions by choos-
ing other values for p and N .

8. DUAL POWER LAW
For the dual power law nonlinearity, we have

F(0) = 0" + b,0™,
where b and b, are arbitrary constants such that

b, # 0. The dual power law nonlinearity is used to
describe the soliton dynamics in photo voltaic-photo
refractive materials.

Equation (1) corresponding to dual power law non-
linearity (155) is given by:

(155)

2
iq, +iaq,,, + (b,|q|2" + b2|q|4”)q = OL%

b 3af(af), ~ )} |0

al'a*
+ I[qu + K(Iqlmq)x + u(lqlz'")xq + qulqu}
where Eq. (41) reduces to:
Agdd" — 00” — A0 + bo™?

_ K()\,+V)¢2m+2 +b2¢4n+2 — 0

For integrability, one must select n = m. This leads to
the modification of Eq. (1) corresponding to dual
power law nonlinearity as:

(156)

(157)

2
iq, +iaq,, + (b1|q|2m + b2|q|4m) q= 0(%
2
oS G
+i [&Ix + K(Iqlz'"q)x + u(lqlz'")xq + qulzqu}.

(158)
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)[l +ev2sech[2(x —cf)In k]]} g/ erel,

N =

(154)

Consequently, Eq. (157) changes to:

A0 — 0d? — Ay’

(159)
+[B = k(A + V)] 6™ + 50" = 0.

Balancing ¢¢" and ¢*"** in Eq. (159), gives the balance

number N = % Since the balance number is not
m

integer, then we take into consideration the transfor-
mation

o =[U (é)]ﬁ , (160)

where U(§) is a new positive function of &. Substitut-
ing (160) into (159), we have the new equation

2mAUU" — [0+ (2m —1) Ay U™
— 4m’ AU + 4m’ [b — (A + V)| U’
+4m’b,U" = 0.

In the next two subsections, we will solve Eq. (161)
using the following two methods.

(161)

8. 1. New Mapping Method
According to the new mapping method, we balance

UU" with U* in Eq. (161) yields the balance number

N =1. Now, from (6), the solution of Eq. (161) has
the same formal solution (90). Substituting (90) along
with (7) into Eq. (161), collecting all the coefficients of

F l(&)[F '(&)]j (/=0,1,..,8,j=0,1) and setting them to
zero, we have the following algebraic equations:

§A0s6§ + %Aom?ﬁs +4m’83b, — gocs?ﬁ =0,

%A0m8182s + 16m°5,5b,
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3 3
2, 1 2 16
2A0m62h + §A0S81 + ?A0m8062s
- lOcsﬁl2 + é—‘Aom&zs
3 3

+16m°8,83b, — 2085 + 2hAS;

+ 4m’8; [b — k(A + V)] + 24m’8b,8; = 0,
2hAS,8, — 20h8,8, + 16m°5,b,3,
+ 12m*8,85 [b, — k(A + V)] + 4A,m8,8,h
+ 20 mdyd,s + 48m°8,8,5,8; = 0,
%hAOSIZ +12m°878, [by — k(A + V)] + 42y pS

- %ochéif — 4opS2 + 4m’S!b, + Aymh

+12m°8,8; [b — k(A + V)] + 6A;mES,h
— Am* &N, + 48m’8,0:b,8, + 24m°5:b,85 = 0,
2A,mS,S,p + 48m°5:5,8,8, + 2A,mS,d,h
— 40pd,3, + 4m’3; [b — k(A + V)] + 4A, 5,5,
+16m°8,8;b, — 8m’8,8,A,
+ 24m*8,8, [ — x (A +V)]8, = 0,
Agpd; — opd; — 4AymS3r + 4,5,
— 8m°8,0,A, — 4m’8; A, + 16m° 5,0,
+12m” {8,8; + 838, }[5 — k(A + V)]
+ 24m’8b,8] — 4ourd; + 8Aymd,S,p = 0,
16m’8,b,8, + 4A)r8,8, + 12m’88, [, — k(A + V)]
— 8m°8,8,A, — 40r8,8, + 2A,mS,S, p — 4A,;md,8,r = 0,
4AmB.S,r + 4m’Sb, + 4m’S; [b — k(A + V)]

—Am &N, + Agrd; — ord — 2A,mr; = 0.
With the aid of the solutions (8)—(29), we have the fol-
lowing types of solutions:

(162)

2 2
Type 1. Substituting s = %, = %,
algebraic Egs. (162) and solve them by Maple, one gets

the following results:
2A,

into the

—2 5=,
T 3l —k(A V)]
hA 6mA
8, = - 0 , p="222 p=p (163
2T amp —x(+v)] T A, (169
2
b, _ b -k +Vv)] , oc:(1+lm)A0,
4A, 2

provided 5, — k(A + V) # 0 and A, # 0.
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If we substitute (163) along with (8)—(12) into
Eq. (90), then Eq. (158) has the following solutions.

8.1.1. Soliton solutions.

2,
xX,t)=|-——"""""—
90 = 3 e )]
N (164)
4tanh’ [e /_2mA2 (x— ct)j "
x|1= AO ei(—Kx+mt+Go)
3+ tanh’ (e\/— 2mh, (x— ct)j
Ay
and
24,
xf)=d-——"2
0=
1
4coth’ (e [—%(x - ct)J " (165)
A0 i(—1o+wr+6y)
x[1-= e 0

>

3+ coth’ (e\/— 2mh, (x - ct)j
Ay

provided A, [ — k(A + V)] < 0,A)A, <0 and € = *1.

8.1.2. Periodic solutions.

2A,
xf)=|-—=="2
90 = 3 S (A V)]
i (166)
4tan’ (e 2’ZA2 (x - ct)j "
w1+ 0 ei(—lcx+wt+eu),
3 —tan’ (e\/2mA2 (x - ct)]
Ao
and
x,0) = |-
A T ]
£ (167)
4cot’ (e 2’ZA2 (x - ct)J "
|1+ 0 i(—Kkx+0r+6)

e ,
3 —cot’ (EJ%(X - ct)j
Ay

provided A, [ — k(A +V)] <0, AjA, >0and e = 1.
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3n’
16p
braic equations (162) and solve them by Maple, we get
the following results:

Type 2. Substituting s = , ¥ =0, into the alge-

ELSAYED M. E. ZAYED et al.

A,
b—x(A+v)

1
X |:1 + coth (E\/—T’Z—AZ(X - Ct)}:|}2m ei(_Kx+@’+90),
0

q(x’ t) = {_
(170)

_ 24, _
9 = b - k(A +v) 0, respectively, provided A, [b — k(A + V)] < 0,A)A;, <0
5, = Amb, - K(Zk+v)]’ p=- A 2, h=h, (168) Type 3. Substituting » =0, into the algebraic
! , 0 Egs. (162) and solve them by Maple, we get the fol-
3 — k(A + lowing results:
p, = Lo = V)],a=(1+m)A0, g
4A, 2 s __ 6A)
0o — - A
provided b — k(A +V) #0,A; # 0 and A, # 0. b= K(X;Z)
If we substitute (168) along with (14) and (15) into 6 =0, § = amlb - K& )
Eq. (90), then Eq. (158) has the following solutions. ! 5 (171)
8.1.3. Dark and singul lit p=% s=3hAO h=nh
.1.3. Dark and singular solitons. A 3omA,’ ,
A 5[, — k(L + V)] 1
ﬁnn={————i——— b, = -2 , a:@——myy
b —x(A+V) 6 ? 364, 2]
2mil, T oesorsoy provided b — k(A + V) # 0,A, # 0 and A, # 0.
x| 1+ tanh e === (x—cr) ]| e ; If we substitute (171) along with (16)—(29) into
0 Eq. (90), then Eq. (158) has the following solutions.
and 8.1.4. Soliton solutions.
L
2m
2sech’ (e [QX—AZ()C - ct)}
q(x, t) — 6A2 1— 0 - ei(—rcx+(m+eo)’ (172)
b —x(A+v) 2mA
4 —|1+tanh| e |=——2(x —ct)
L
2m
2cosech’ (e /%(x - ct)j
q(x l‘) _ 6A2 A0 ei(—lOc+(1)t+9[]] (173)
k(A +v) 2mA ’ ’
4 —|1+coth| e [——2(x —ct)
_ - -
sech’| e f%(x —ct) "
3A2 A0 i(—rx+r+6))
q(x,t) = P o 2— e , (174)
1= k(A+) 1 + tanh [e\/zmAz (x—ct)j
_ - L
cosech’ ( /2'ZA2 (x - ct)) >
q(x,1) = ; 3A}i 24 0 ei(_Kx+u)t+60)’ (175)
=K+ V) 1+ coth (e\/2mA2 (x— ct)}
provided A, [ — k(A + V)] > 0,A,A, > 0and e = 1.
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8.2. Addendum to Kudryashov’s Method

According to this method, we balance UU" with U* in Eq. (161), one gets the same relation (146). Now, we
will discuss the following cases:

Case 1. If we choose p =1, then N = 1. Thus, we deduce that from (31) that Eq. (161) has the same formal
solution (113). Substituting (113) along with (32) into Eq. (161), collecting all the coefficients of each power of

[R(&)]m' [R'(E_,)]j, (m1 =0,1L2,....,4, j = 0,1) and setting each of these coefficients to zero, one gets the following
set of algebraic equations:

—2A,mPryIn’ k + 4m’Blb, — AgyPBr In” k + oy In° k = 0,
4m’B; [, — k(A + V)] + 16m°BBib, — 4A;mPyPyy In” k = 0,
12m°BoB; [, — k(A + V)] — oy In’ k + 24m°Beb,B; — 4m’BiA, + AB; In” k = 0, (176)
280mBoB, In k + 12m° BB, [b — (A + V)] + 16m’Byb.B, — 8m’ByBA, = 0,
—4m’ By, + 4m’By [ — k(A + V)] + 4m’Byb, = 0.
On solving the above algebraic Egs. (176) by using the Maple, one gets the following results:

B, = - 34,1 k B - 3eA2x I’ k
C 2mlb -k +V)] T 2m[b - k(A +V)]

) _ 2
o= (1-2m)Ay A =—S0in2g, b = 20O =K EV)]
m 9A,In" k

(177)

provided ¥ > 0 and € = 1.
Substituting (177) along with (33) into Eq. (113), one gets the solutions of Eq. (158) in the form:

1

2 m

sy = | otk 1, 22y, CE— 178)
mlb —x(A+V)]|2 44°exp, [(x —ct)] + yexp, [-(x —cr)]

provided A, [h — k(A + V)] < 0.

In particular, if we set = 44% in (178), then we have the bright soliton solution of Eq. (128) as:
1

2 2m
Ik eVaech[(x - cr)in k]]} glEronst) (179)

X, ) =4—

B { b — <+ V)]
Case 2. If we choose p = 2, then N = 2. Thus, we deduce that from (31) that Eq. (131) has the same formal solu-

tion (119). Substituting (119) along with Eq. (32) into Eq. (131), collecting all the coefficients of each power of [R(é)]m2

[R'(é)]j, (my, =0,1,2,...,8, j = 0,1) and setting each of these coefficients to zero, one gets the following set of
algebraic equations:

4m’Byb, + 4orxBs In’ k — 8AmPyy In” k — 4AB5 In° k = 0,
—4A BB, In° k —14A,mB B,y In” k + 4oB,B, In’ k +16m°B,B3b, = 0,
16m°BoBab, + oy Bi In’ k + 4m’B; [ — k(A + V)] — 4AmBry In® k — 16AgmBoB,x In’ k + 24m’Bib,B5
—APIIn’ k =0,
12’”2[31[35 [b — k(A + V)] + 16’”2[3%172[32 + 48’”2[3051172[33 - 6A0mB0|31x1n2 k =0,
24m’Bob,B; + 4m’Blb, + 4AB In” k — 4m’BrA, +12m°ByB5 [b — k(A + V)]
+ 48m°ByBLb,B, — 4aB; In’ k + 12m°BiB, [b, — k(A + V)] = 0, (180)
24’”23061 [ — k(A +V)]B, —40B,B, In® k + 16’”2[30[313172 +2A,mB,B, In’ k - 8m2[31[32A2
+ 4m’B; [b — k(A + V)] + 48m°Beb,B\B, + 4ABB, In’ k =0,
12m°BoB; [, — k(A + V)] = 8m’BBrA, + 8AmBB, In® k — 4m’Bi A, + A In® k
— af; In’ k +12m°BeB, [ — k(A + V)] + 16m°Byb,B, + 24m’Bob,P; = 0,
200mPBoB, In’ k + 12m°Bef, [b — k(A + V)] + 16m’Byb.B, — 8m’ByBA, = 0,
+4m’Bob, + 4m’By [ — k(A + V)] — 4m’BiA, = 0.
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On solving the above algebraic Egs. (180) by using the Maple, one gets the following results:

6A,In” k
m[b —x(A+V)]

Bo=_

2
B =0, B, = 6eAgy2) In” k ’
m[b — k(A +V)]

z 5 (181)
b - +
Ay = —Huppy g - mB—x( . V)]
m 18A,In” k
provided ¥ > 0 and € = 1.
Substituting (181) along with (33) into Eq. (119), one gets the solutions of Eq. (158) in the form:
2 m
B N %0 . W 2 PO 2 4eA\2y rwcrarsan) (182)
mlb —x(A+V)]| 447 exp,[2(x —ct)] + yexp, [-2(x —ct)]
provided A, [ — k(A + V)] < 0.
In particular, if we set = 44% in (182), then we have the bright soliton solution of Eq. (158) as:
2
gty = 1——OBoln K [1+ev2sech[2(x - cf)In k]] (oot (183)
mlb — k(A +V)]
Similarly, we can find many other solutions by choos- " 2 2
ing other values for p and N . Agh0” —ap™ — Ax0 (188)

9. POLYNOMIAL LAW
For the polynomial law nonlinearity, we have

F(0) = b0 +b.0" + b0,
where b,b, and b; are arbitrary constants such that
by #0.

Equation (1) corresponding to polynomial law
nonlinearity (184) is given by:

(184)

ig, + iag.s, + (Bla + bilal + bla)a = a‘j;

i ) ) Y [ s
+i(8q, +Mjal"a)_+w(a") g +Via"a. |,
where Eq. (41) reduces to:
Ag00" — 0 — Ax0” + o' (186)

— k(A + V)0 + 5o’ + byo° = 0.

For integrability, one must select m = 1. This leads to
the modification of Eq. (1) corresponding to polyno-
mial law nonlinearity as:

g, + iag.s, + (Bla + blal + bla)a = a‘j;

" ddla *[2|€1| () {(|‘1|2)xﬂ +q

+i {qu + %(Iqlzq)x + u(lqlz)xq + qulqu}
Consequently, Eq. (186) becomes:

(187)
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+[b = k(L + V)] 0" +5,0° + byo* = 0.

Balancing ¢¢" and (bg in Eq. (188), gives the balance

number N = l. Since the balance number is not inte-

ger, then we take into consideration the transformation

o) = [UEF,

where U (&) is a new positive function of &, Substitut-
ing (189) into (188), we have the new equation

(189)

3AUU" — (0o + 2A,) U —9AU°

8 10 (190)
+9[b — k(A +V)]U? +9b,U % +96,U* = 0.
For integrability, one must select:
b,=0, b =x(A+V). (191)

This leads to the modification of Eq. (1) correspond-
ing to polynomial law nonlinearity as:

iq, +iaq,,, + [ 7»+V|q|+b|q|]q Oc‘ilx

i )~ (o)) |

+ I{qu + X(Iqlzq)x + u(lqlz)xq + qulqu]

(192)

Consequently, Eq. (190) changes to:

3AUU" — (00 +2A0) U =9AU* +9bU° = 0. (193)
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In the next subsections, we will solve Eq. (193) using 4 10858652 + 365:5°5. = 0
the following two methods. U0 : SE T
975,18, + 9b;d; — Eoché}f —-9A,%;

9.1. New Mapping Method + 5458005 — 4opd; + 2A,hd;
2 2
According to the new mapping method, we balance +1085;8,8 8, + 44, pd; =0, (194)
3
UU" with U* in Eq. (193) yields the balance number 300848, + 36038, + 7785,
N =1. Now, from (6), the solution of Eq. (193) has — 40,p8,8, —18A,8,8, +1085,8:8,5, = 0,
the same formal solution (90). Substituting (90) along A, p512 45 4b38(2)512 _ 40(7'6% +36b, 6(3, 5,

with (7) into Eq. (193), collecting all the coefficients

of F'©[F'©)] (1 =0,1,...8,j = 0,1) and setting them
to zero, we have the following algebraic equations:

— opd —18A,8,8, — 2A,rd3
— A8 +12A,8,p8, = 0,
—40rd,0, + 3A,0,pd, — 2A,r8,0,
%Aoséﬁ +9b5" — ‘g‘assﬁ -0, 365,508, — 18A,8,8, = 0,
—9A,8; + 6A,8,r8, — ard; — 2A,8; + 95,8 = 0.

With the aid of the solutions (8)—(29) we have the fol-
lowing types of solutions:

+%A0s8162 4 365:8,8) — ‘g‘asalaz -0,

366,8,5, + %Aos&z + 545,878 + 88,55,

5 > 1 5 Type 1. Substituting s = 3—;’2, r= ﬁ, into the
— 20h8; + 5A,hd; — = 0usd; =0, . 16p 27h
3 algebraic Egs. (194) and solve them by Maple, one
3A¢0,50, + 8Ay4d,0, — 20.hd,0, gets the following results:
Sy=el-22 =0 8= | B, oy g3, (195)
3b; A, 1085, 2A, 2

provided A,b; < 0,A, # 0 and € = +1.
If we substitute (195) along with (8)—(12) into Eq. (90), then Eq. (192) has the following solutions.

9.1.1. Soliton solutions.
4 tanh’ (e /—&(x - ct)j
AO i(—1or+wr+6y)

A
q(x,1) = f——z 1- e , (196)
31 34 tank? [e\/—&(x - ct))

Ay

W=

and

W=

4coth’ (e —A—(x - ct)}
q(x’ l‘) - L?)ATZ 1— 0A ei(—Kx+(nt+90)’ (197)
31 3+coth’ (eJ—Z—z(x - ct)j
0

provided A,b; < 0,A)A, <0 and e = 1.
9.1.2. Periodic solutions.

, (198)

1
3A 3
4tan’| e /—2 x—ct
- } A2 ( 2AO ( )j ei(—Kx+mt+90)
3B 3 tan? [e [%(x - ct)j
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and

A 4 cot ( f (x —ct)}
qx, ) =1 |- glronol, (199)
3b3 [ / ]
—cot - ct
provided A,b; < 0,A)A, >0 and € = 1.
L. 34 . and
Type 2. Substituting s = @, r = 0, into the alge- o
x, 1) =4= |72
q(x,1) {2 b,
(202)

braic Egs. (194) and solve them by Maple, we get the

following results:

X |1+coth|e —&(x
24,

1
_ Cl‘)):|}3 ei(—lcx+mt+eg),

8, =€\/§, 8,=0, 5, =_€hA0\/§,
by 6A, \ b (200)
_3A, heh o= 5 A respectively, provided A,b; > 0, AjA, < 0 and e = £1
PEToa T T Type 3. Substituting r =0, into the algebraic
provided Ay > 0,8, # 0 ande = 1. Eas. (194) and solve them by Maple, we get the fol-
If we substitute (200) along with (14) and (15) into
Eq. (90), then Eq. (192) has the following solutions. 5, = e \/&, 5,20, 8, =—" \/&
9.1.3. Dark and singular solitons. by 6A; \ b (203)
3A 30°A 5
Q(xﬂ‘): l & pz__z, - - 0, h:h, O€=—AO,
2\ b, 24, 8A, 2
(201)  provided A,b; > 0,A, # 0 and € = £1.

1
3 .
x |1+ tanh| e —&(x—ct) gllexrorttn)
2A,

9.1.4. Soliton solutions.

W=

X, 1) =4,—
q(x,1) b,

_ 4 - {1 + tanh (e\/?%o( - ct)ﬂz_
2cosech’ (e\/—TAA;(x - ct)] _
rveon B

W 1=

LS}

qg(x,t) =< [—=|1+

1J§
2\ b,
1A,

by

2

W=

q(x,1) =
1 + tanh 2A0 - ct)j_

W =

- ct)j_

2
cosech

q(x,1) =

(
:

1+ coth \/ ZAO - ct)}_

provided A,b; > 0,A)A, <0 and e = +1
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3A,
2sech Ee /—2—A0( —ct)j .
e

_ . ;
sech [e / 2A0( ct)j .
e

If we substitute (203) along with (16)—(29) into
Eq. (90), then Eq. (192) has the following solutions.

ecsors) (204)
i(—le+(Dt+eo)’ (205)
cvors) (206)
i(—Kx+03f+eo)’ (207)
Vol. 66 No.5 2021
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9.2. Addendum to Kudryashov’s Method

According to this method, we balance UU" with U 4
in Eq. (131), the same relation (146). Now, we will dis-
cuss the following cases:

Case 1. If we choose p =1, then N =1. Thus, we
deduce that from (31) that Eq. (193) has the same for-

505

mal solution (113). Substituting (113) along with (32)
into Eq. (193), collecting all the coefficients of each
power of [RE)]" [R'E)]), (m =0,1,2,...,4, j =0,1)
and setting each of these coefficients to zero, one gets
the following set of algebraic equations:

—4A,In” kxB; + oln’ kP +9bB; =0, —6A,In° kBB, + 366:8,B; = 0,

Ao In’ kB — oln® kP; + 54b,B3B; — 9AP; = 0,

—18ABoB, +365B3B, + 34, In” kBB, = 0, 955 — 9A,B; = 0.

On solving the above algebraic Egs. (208) by using the Maple, one gets the following results:

5o, b _e\/(3A2+Aoln2k)x
0o — Y 1 —

3b,
provided (3A, + Ay In” k) xb; > 0 and € = *1.

Substituting (209) along with (33) into Eq. (193), one gets the solutions of Eq. (192) in the form:

q(x,t) = {\/(Mz + 4 In” k)X{

3b,

In particular, if we set y = 44% in (210), then we have
the bright soliton solution of Eq. (192) as:

q(x,1)
1 (211)

2 3 .
_ { 3, +3i0 0’ (- er)In k]} oo
3

while, if x = —4A2, one gets the singular soliton solu-
tion of Eq. (192) as:

2
) :{ [ 38, + 4, Ink
3b,

! 212)
3
= cosech[(x —ct)In k]} e/Terorhl

Case 2. If we choose p =2, then N = 2. Thus, we
deduce that from (31) that Eq. (193) has the same formal
solution (119). Substituting (119) along with Eq. (32) into
Eq. (193), collecting all the coefficients of each power of

[RE]™ [RE)], (my = 0,1,2,...,8, j = 0,1) and setting
each of these coefficients to zero, one gets the follow-
ing set of algebraic equations:

96,85 —16A, In” k5 + 4aln” ky B3 = 0,
4ocin® ky BB, — 254, In’ kBB, + 366,38, = 0,
36b;B0B3 — 7A, In” kyB; + aln’ kyp?

— 24A, In” kB, B, + 54b,8,B5 = 0,
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(208)
2
o= M, (209)
In“ k
1
3 .
. 44 i| l(—Kx+wt+90). (210)
44" expy [(x — ct)] + yexpi [-(x = c1)]
1085,8,B,B3 + 365581B, — 9A, In” kBB, = 0,
4, In” kB3 + 545,335 — 4o In” kP;
+ 95,8/ +1085,8,B7B, — 9AB; =0,
108b3[33l31l32 —4o.1n’ kBB, + 361’3B<)|313
+ 7A, In® kBB, — 18A,3,8, =0, 213)

12A, In” kBB, — ot 1n” kP;
— AP + 54bBiB; + 365,3:,
— 18A,B,B, + Ay In” KB} = 0,
—18A,B,B; + 36b358B1 + 34, In’ kB,By = 0,
—9A,B: + 95,85 = 0.

On solving the above algebraic Egs. (213) by using the
Maple, one gets the following results:

(38, + 44, In” k) x
Bo=0, B, =0, Bz=€\/ s
3b; (214)

o = "0 + 44, In’ k
41’k

provided

(3, +4A I’ k)yb, >0 and e = 1. (215)
Substituting (214) along with (33) into Eq. (193), one
gets the solutions of Eq. (192) in the form:
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(216)

(34, +44,In” k) x 44 P erany)
q(x,1) = 5 e :
3b; 44" exp, [2(x — ct)] + g expi [-2(x — ct)]

In particular, if we set x = 44’ in (216), then we have the bright soliton solution of Eq. (192) as:

1
2 3
s { Ba, + ;AO I0*K o2 (x - en) k]} o)
3

(217)

while, if x = —4A2, one gets the singular soliton solution of Eq. (192) as:

2 3
g(x,1) = {\/——C3A2 A0 IN Ko sech[2(x - er) In k]} oferert)

3b,

(218)

Similarly, we can find many other solutions by choosing other values for p and N .

10. TRIPLE-POWER LAW

For the triple-power law nonlinearity, we have

F(0) = 50" + 5,0 + by¢™,

where b,b, and by are arbitrary constants such that

by # 0. Equation (1) corresponding to triple-power
law nonlinearity (219) is given by:

(219)

2
g+ (Bl + T+ 5l = 0

2
4|q[|32q*[2|q|2(lq|2)m o)} | 20
+i {qu + K(Iqlzmq)x + M(Iqlz'")xq + qulzqu},
where Eq. (41) reduces to:
A" — g = Axp” + 5™ 221)

_ K(7\,+V)(I)2m+2 +b2¢4n+2 +b3¢6n+2 — 0

For integrability, one must select n = m. This leads to
the modification of Eq. (1) corresponding to triple-
power law nonlinearity as:

. . 2m 4m 6m “Ix‘z
iq, +iaq,, + (b1|q| + b2|q| + b3|q| )q = Oc?

B [ 2 2 K
+ Ad(al’) —illal) } |[+va @22
+ i[ﬁqx +Mla"g) +u(la") g+ qulz'"qx]
Consequently, Eq. (221) becomes:
Ah0" = 00" = 4,07 +[b = k(A +V)]OTT o)

+ b2¢4m+2 + b3¢6m+2 =0.
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Balancing ¢¢" and ¢6m+2 in Eq. (223), gives the bal-

ance number N = % Since the balance number is

m
not integer, then we take into consideration the trans-
formation

0E) = [UE) (224)

where U(€) is a new positive function of & Substitut-
ing (224) into (223), we have the new equation

3mAUU" —[o+ (3m —1)A) U
8

— 9’ AU +9m” [ — k(A + V)| U? (225)
10
+9m’bU * +9m’bU* = 0.
For integrability, one must select:
b,=0, by =x(A+V). (226)

This leads to the modification of Eq. (1) correspond-
ing to triple-power law nonlinearity as:

2
ig, +iaq,,, + |:K(7\, + V)|q|2m + b3|q|6’”] q= oc%

2
4|q|%q*[z|q|2(|q|2)xx—{(|q|2)x}}yq 27)
+1\8q, +Mlal"a)_+ (™) g +Vlal"a.
Consequently, Eq. (225) changes to:
3mALUU" o+ (3m—1) A U™ (228)

— 9’ AU +9m’bU* = 0.

In the next subsections, we will solve Eq. (228) using
the following two methods.
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10.1. New Mapping Method same formal solution (90). Substituting (90) along

According to the new mapping method, we balance ~ With (7) into Eq. (228), collecting all the coefficients of

UU" with U* in Eq. (228) yields the balance number F l(&)[F '(i)]j ({=0,1,...,8, j =0,1) and setting them to
N =1. Now, from (6), the solution of Eq. (228) hasthe  zero, we have the following algebraic equations:

—4A,mS3s — Im’83b, + gocsﬁg - §A0s5§ =0,
T AmS,S,s — §A0s6162 4 %asSIBZ —36m’8,8 = 0,
—36m’8,53b; — 3AgmOh + 20hS: — 54m’SbS: + %as&f - %Aosﬁf
— 8AymBS,5 — 2Ah&; — 2A;mls = 0,  — 6Amd,8,h — 36m’S b8, — 3A,mSd,s

- 2A0h8162 + 2(1}18182 - 108!’)’1280611)38% = O,
%ah&z +9m’SA, — %thaf — 9AGBS,h — AN, PO — ISy — %Aoméfh + 405>

(229)
— 108m°8,8,5,8, — 54m’8;b:5; = 0,
—10811’1283[)38182 + 40([)8182 - 36/’1’1250813[)3 - 3A0m8061h - 3A0m6162p + 18m28182A2 - 4A0p8182 = 0,
18m>8,8,A, + 0pd; — 4AyrSs + 40rds + IM’ ST A, —12A,mdyS, p — 54m°Sobsd;
—Ay P& — 36m°8,bs8, + 6Amd3r = 0,
4&"6182 - 4A0r8182 - 36m283b361 + 18m28081A2 + 6A0m81521’ - 3A0m8061p = 0,
I Sy — Agrd; + ourd; — Im’Sob; + 3Agmrd; — 6A;mS,r = 0.
With the aid of the solutions (8)—(29), we have the following types of solutions:
2 2

Type 1. Substituting s = %, r= lprh, into the algebraic Egs. (229) and solve them by Maple, one gets the

following results:

60 =€ _ﬁ, 6] = O, 62 = EhAO __A2 y
\/ ib3 mA, | 108b, (230)
2 ok o=L(3mt2)a,
2A, 2
provided A,b; < 0, Ay # 0 and € = 1.

If we substitute (230) along with (8)—(12) into Eq. (90), then Eq. (227) has the following solutions.
10.1.1. Soliton solutions.

— 1

4tanh’ [e /—%(x - ct)j "
q(x’ t) — \/E 1— A0 ei(—m+mt+eg)’ (231)
3551 34 tank? [e\/— 3mA, (x - ct)}
Ay i
and
_ —~-L
4coth’ (e /—?)’Zﬁ(x - ct)j "
q(x’ t) _ \/E 1— 0 ei(—Kx+mt+eo)’ (232)
3B 34 coth? (e\/—%(x - ct)j
0

provided A,b; < 0, AjA, <0and e = +1.
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10.1.2. Periodic solutions.

ELSAYED M. E. ZAYED et al.

4tan’ (e [3;1AA2 (x - ct)j "
q(x, t) — _ﬁ 1+ 0 ei(—lcx+u)t+60)’ (233)
3B 3 tan?| e 2142 (x—ct)
i 2A, |
or
_ - L
4cot’ [e 3mA, (x - ct)} 3m
q(x’ t) _ _& 1+ 0 ei(—mx+oot+60), (234)
3B 3ot e %(x —ct)
i 2A, |
provided Ayb; < 0, AjA,> 0 and € = 1.
2
Type 2. Substituting s = %, r = 0, into the alge- q(x,1) = {l\/&
braic Egs. (229) and solve them by Maple, we get the 2\ by (237)

following results:
6OZE\/A727 61:07 62:_EhA0\/§,

b3 6mA2 b3 (235)

, h=h o= (3m+2)A0,

1
2A, 2
provided A,b; > 0, Ay # 0 and € = £1.

If we substitute (235) along with (14) and (15) into
Eq. (90), then Eq. (227) has the following solutions:

10.1.3. Dark and singular solitons.

1 |A,
X, 1) =4= [—=
q(x,1) {2\/;
1
X |1+ tanh| e —%(x—ct) 3me"(“°‘+0’f+60)’
2A,

and

(236)

10.1.4. Soliton solutions.

L
3m
X |1+ coth| e —3mA2 (x — Cf) el(*KX+(Dt+GO),
24,

respectively, provided Ab; > 0, AjA, < 0 and e = 1.

Type 3. Substituting » = 0, into the algebraic equa-
tions (229) and solve them by Maple, we get the fol-

lowing results:
8 =0, 322_% A
6mA, \ b,

60 = E\/E,
by

2
p=—hy o Ay, (238)
2A, 8mA,
%(3m +2)A,,

provided A,b; > 0, Ay # 0 and € = 1.
If we substitute (238) along with (16)—(29) into
Eq. (90), then Eq. (227) has the following solutions.

A 2sech’ [e /—3;1AA2 (x— ct)}
g(x,1) = b_2 1— 0 . i(ﬂcx+<nt+90)’ (239)
3 3mA,
4 {1 + tanh (e f oA, (x ct)ﬂ
1
3m
2cosech’ (e /—%(x - ct)]
a(x.) = \/% 1+ 0 _ et(—lcx+mr+eo)’ (240)
3 3mA
4|1+ coth| e |-2222(x —
{ + cot [e oA, (x ct)ﬂ
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- -~-L
3m
sech ( / 3mAA2 (x - ct)J
g(x.1) = %\/% ei(—Kx+wt+90)’ (241)
’ 1+ tanh( mA2 - ct)]
-~-L
cosech ( 3;nAA2 ct)} "
q(x,1) = 5 iz 0 ei(—lcx+mt+60)’ (242)
} 1+ coth( ct)j

provided A,b; > 0, AjA, <0 and e = +1.

10.2. Addendim to Kudryashov’s Method

According to this method, we balance UU " with U 4
in Eq. (228), the same relation (146). Now, we will dis-
cuss the following cases:

Case 1. If we choose p =1, then N = 1. Thus, we
deduce that from (31) that Eq. (228) has the same for-

3ABrmy In’ k + BiAgx In® k — 9m’} b

mal solution (113). Substituting (113) along with (32)
into Eq. (228), collecting all the coefficients of each
power of [RE)]" [R'E)), (m =0,1,2,...,4, j =0,1)
and setting each of these coefficients to zero, one gets
the following set of algebraic equations:

—BlayIn’k =0,

6A0B1mB0X 11’12 k - 36mZB()be3 = 0,

Im’BiA, + Proin’ k — BiA, In® k — 54m’BobP; = 0,

On solving the above algebraic Egs. (243) by using the Maple, one gets the following results:

50§ _e\/(3mA2+Aoln2k)x
0o — Y 1=

3mb,
provided (3mA, + Ay In” k)b, > 0 and e = *1.

Substituting (244) along with (33) into Eq. (228), one gets the solutions of Eq. (227) in the form:

(3mA, + Ay In” k )y,
q(x,1) =
3mb,

In particular, if we set = 44%in (245), then we have the bright soliton solution of Eq. (227) as:

1
2 3m ‘
g(x,1) = 3mA, + Ay In kSCCh [(X _ Cl‘) In k] ez(—Kx+w1+90)’
3mb,

while, if x = —4A2, one gets the singular soliton solution of Eq. (227) as:

3mA, + Ay In’ k
—s

(243)
—3AB,mP, In’ k — 36m”PobP, + 18m°BBA, = 0,
9m’BeA, — 9Im’Byb; = 0.
2 2
’ In’k ’
1
3m
. 44 e ( Kx+0)t+60). (245)
447 expy [(x —ct)] + xexpy [-(x = ct)]
(246)
3 j(—1ex+0r+6)
osech[(x —ct)Ink]f & ) (247)

q(x, t) = {\/_

3mb,
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Case 2. If we choose p =2, then N = 2. Thus, we [ pey™ [R'(EV —0.12 = 0.1 d setti
deduce that from (31) that Eq. (228) has the same formal c[aac(:%)]of tgqes(g )c]o,cﬂ(“g;cz:ien?s’ t,o ’zer,g ’ éne g:et)s ‘?l?e fiﬁlolvr\lf
solution (119). Substituting (119) along with Eq. (32) into ine set of aleebraic equations: ’

Eq. (228), collecting all the coefficients of each power of & g q ’

4A¢xB5 In* k — 9m’Bsb; — 405 In” k + 12A,mP3y In” k = 0,
21AmBiB,x In” k — 4oty BB, In” k — 36m”B B30y + 4Ax BB, In” k =0,
24A,mBByx In” k — Brog In” k + 6APrmy In” k — 54m’B b5
— 36m’BPrb; + BiAgyIn’ k =0,
=36m’BibsB, — 108m’ByfbsB3 + IABmPyx In” k = 0,
—54m’Bobs — Im’B by — 4AB5 In’ k — 108m°BPrbsP, + 9m’BoA, + 4aBs In’ k = 0, (248)
—4ABiB, In” k — 36m’BBib; — 108mBob BB, — 3AsmB,B, In” k
+18m’BB,A, + 40f,B, In* k =0,
—54m’Beb i — 36m°BobsB, + 18m°BoP,A, — BiA, In” k —12A,mByP, In” k + 9m’BIA, + Brovln® k = 0,
—3A,BmBy In” k = 36m"Bybs, + 18m’ByB,A, = 0,
ImBoA, — Im’Byb; = 0.
On solving the above algebraic Egs. (248) by using the Maple, one gets the following results:

3mA, + 4A, In” k o2 2
B, =0, B, =0, Bz=e\/( 2 0 )X o 9mA2+24A01nk
3mb, 4In" k

provided (3mA, +4AIn” k) xb; > 0 and e = %1.
Substituting (249) along with (33) into Eq. (228), one gets the solutions of Eq. (227) in the form:

3mA, +4A, In’ k .
a(x.f) = ( 2 0 )X . 44 el(—loc+(1)r+90). (250)
3mb, 44" expy [2(x — et)] + yexpi [-2(x — c1)]

In particular, if we set x = 44%in (250), then we have the bright soliton solution of Eq. (227) as:

, (249)

1

2 3m
q(x,t) = {\/3mA2 ; 4?“ In Keech [2(x —ct)In k]} g/Teerorth), (251)
mb;

while, if y = —4A2, one gets the singular soliton solution of Eq. (227) as:

1

2 3m
g(x,t) = {\/— 3mA, ;:bAO In kcosech [2(x —ct)In k]} e/Terrortll), (252)
3

Similarly, we can find many other solutions by choosing other values for p and NV .

11. ANTI-CUBIC LAW where b, is the coefficient of anti-cubic nonlinearity, &,

For the anti-cubic law nonlinearity, we have is the Kerr law nonlinearity and b, is the pseudo-quin-
tic nonlinear coefficient.

F(0)=bo+ b2¢2 + b_32, (253) Equation (1) corresponding to anti-cubic law non-

linearity (253) is given by:
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2
. . b
iq, +iaq,,, + (bl|q|2 + b2|q|4 + —3](1 = OL@

o q*
2
rror RUCY IS (VNN AT
+i {qu + K(Iqlzmq)x + u(lqlz'")xq + qulz'"qx},
where Eq. (41) reduces to:
Ad’0" = 00" + by — Axg’ 255)

+ 50’ — k(A + V)0 +5,0° = 0.

For integrability, one must select m = 1. This leads to
the modification of Eq. (1) corresponding to anti-
cubic law nonlinearity as:

2
. . b .
iq, +iaq,, + [bl|q|2 + b2|q|4 + —3}1 = Otm

ol q*

B |: 21 2 2 2}

+ g \la|") —1lla +7q (256)
dar 26 (), ()}
+ i{qu + l(lqlzq)x + u(lqlz)xq + qulqu}
Consequently, Eq. (255) changes to:
3.0 2,12

AO(l) q) - (Xq) q) + b3 (257)

— A" +[b — k(A +V)]0° + byo® = 0.

Balancing ¢3¢" and (p8 in Eq. (257), gives the balance

number N = % Since the balance number N is not

integer, then we take into consideration the transfor-
mation

o) = [UE, (258)

where U(§) is a new positive function of . Substitut-
ing (258) into (257), we have the new equation

200U — (00 + Ay U + 4by — 4AU°
+4[b — k(A +V)|U’ +4bU" = 0.

In the next two subsections, we will solve Eq. (259)
using the following two methods.

(259)

11.1. New Mapping Method
According to the new mapping method, we balance

UU" with U* in Eq. (259) yields the balance number

N =1. Now, from (6), the solution of Eq. (259) has
the same formal solution (90). Substituting (90) along
with (7) into Eq. (259), collecting all the coefficients

of FIE[F'®)] (1=0,1,..,8 j=01) and setting
them to zero, we have the following algebraic equa-
tions:

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS

‘g‘ocssi _4b,5Y — 4N = 0,
—165,8,5 + gocsf)]Sz — 6A8,8,5 = 0,
—4[ - k(A +V)]8 + éaszsf
— 245,5°5 — %AOSOSZS N
- §A0512s +20hS2 — 165,8,5 = 0,

—165,8.8, + 2048,8, — 485,5,8,85 — 6A,8,8,h
— 208,85 —12[b — k(A +V)] 8,85 = 0,
%ah&f — 4,8 — 245,528% + dapd

—12[b = k(A +V)] 8§85 —12[h — k(A + V)] &/8,
— 63,0, — 4A,5; p — 485,8,5,9,
- %A()Slzh +4A,82 = 0,
—2A¢8y8,h — 24 b, — k(A + V)] §,8,5,

+ 40p8,8, — 486,8:8,8, — 6A,8,8,p
+8A,8,8, — 165,0,5, — 4[h — k(L +V)]5; =0,
8A,8,8, — AyS: p —16b,5:8, + 0pd;

— 8Ay8,8,p — 12[b — k(A + V)] 8,8; — 24b,8:8;
—12[b — k(A +V)] 88, + 4ard; + 4A,8] =0,
—12[b — k(A + V)] 88, + 4ard,d,

— 2A,8,8,p + 8A,8,8, — 166,8,8, = 0,
—4by + 40,85 — 40,8, — 4[b — k(A + V)]
— 4,8y + Agrd; + ord = 0.

Now, from the solutions (8)—(29) we have the follow-
ing types of solutions:

(260)

2 2
Type 1. Substituting s = %, r= 12%,
algebraic Egs. (260) and solve them by Maple, one
gets the following results:
5 = 32A,
3114333 [ - k(A + V)]
5 = — 4hA,
? 3(1+V33)[5 - k(A + V)]

_3(114+433)A, Y
P——T, =n,
, 9(77-333)[B - x (A + V)]’

2 ’

1024A,
12804 3

i 33(33+V33)[8 - k(A + V) *72

provided b — k(A +V) # 0 and A, # 0. If we substi-
tute (261) along with (8)—(12) into Eq. (90), then
Eq. (256) has the following solutions.

into the

1 — Y

(261)

09
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11.1.1. Soliton solutions.

0=

(11++33)4, |
A, X —ct)

(1 + \/ﬁj [3 + tanh? {GJM(X - ct)ﬂ

ei(—lcx+wt+90), (262)

11A,

N =

(11+33)4, |
ST X —ct)

ei(—Kx+(Dt+90), (263)

8(5 + \/ﬁ) tanh’ (e
~ 32A, _
a0 = 3(11+3V33][5 — k(A + V)] :
and )
8(5+/33)coth’ [e
_ 32A, ~
aen 3(11+3V33)[5 - k(L + V)] :

provided A, [h — k(A +V)] >0, AjA, >0and e = £1.
11.1.2. Periodic solutions.

(1453 [3 - UM< . mﬂ

11A,

-1
8[5+«/§]tan2[e —% x—ct)} 2
32A2 0 i(—iox+wr+8y)
1) = 1+ , (264)
aee1) 3(11+3V33)[5 — k(A + V)] 5 ) (11++33)A, ’
(1++33)| 3~ tan’| € e
and ) _
_ -1
8(5+x/§jcot2 [e —%(x—ct)} 2
q(x’ t) — 32A2 1+ 0 ei(—loc+(1)t+60)’ (265)
3(11+3V33)[5 — k(A + V)] N , (11++33)A,
(1+33)|3-cot’| € —T(x—ct)

prOVided A2 [bl - K(}\,+V)] > 0, AOAZ <0 and e ==1.

2
Type 2. Substituting s = %, r = 0, into the alge-

braic Egs. (260) and solve them by Maple, we get the

following results:
61 = O, 82 = ehAO %s
8A, \5A,

5, =c |2,
5A,
15A2

p:ﬁa h:h, b2=_ ba

(266)

0 43
o :%AO, b =x(A+V),

provided b;A, >0, Ay # 0 and e = 1.

If we substitute (266) along with (14) and (15) into
Eq. (90), then Eq. (256) has the following solutions.
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11.1.3. Dark and singular solutions.

q(x,1)
3 (267)
= %tanh 2e &(x —ct) ’ e/t
5A, A,
and
q(x,1)

1
5 (268)
=1 253 cotn | 2¢ &(x—ct) 2e’(_'c’CJ'(‘)'+e°),
5A, A,

respectively, provided A,b; > 0, AjA, > 0 and € = *1.

Type 3. Substituting » =0, into the algebraic
Egs. (260) and solve them by Maple, we get the fol-
lowing results:

Vol. 66
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10A 20A 2A
Sp=—r—— 2 §=0, S=-———2 . p=-"2
S b -k V)] 2T T —xv)] P Ay
2
s:_96A2’ h=—48A2, b =21[b1—1<(k+\/)] , (269)
7A, 7A, 25A,
50043
3 : 5, O =§AO,
3430, — k(L + V)] 2

provided b — k(A +Vv) # 0, A, # 0 and A, # 0.
If we substitute (269) along with (16)—(29) into Eq. (90), then Eq. (256) has the following solutions.

11.1.4. Soliton solutions.
3sech (e /—é( - ct)j
104, - 7A Jilors)

N =

q(x,1) =— , (270)
76 - k(2 +v)] 24, ’
18 =2/ 1+ tanh| € |-=-2(x —ct)
7A,
1
2
12cosech (e [—%( —ct)j
q(x, fH=1- 10A2 1+ 0 . ei(ﬂcx+wt+eo)’ (271)
7[6— k(X +V)] 20,
18 =21 + coth| €, |-=2(x —ct)
_ -4
sech’ (e /—%(x - ct)J ’
q(x, t) _ _7 p IOAi 1— 20A ei(—Kx+(Dt+90), (272)
b = x(2+V)] 6 +4tanh| € [—=—-2(x —ct)
| A |
-4
2
3cosech ( - ct)J
q(x’ t) — _7 p 10A}2\’ ei(—mx+mt+90), (273)
[ = x( +V)] 6+4coth(\/ —ct)j
provided A, [ — k(A +V)] <0, AjA, <Oand e = *1.
11.1.5. Bright soliton.
2
g(x,1) = _7 IOAi 1— 21A ei(—lcx+0)t+60)’ (274)
(6 = (2 + V)] J5cosh| 2e -2 (x —et) |+ 3
and
1
2
ga.f) = - 10A, 1— 1 ei(—Kx+u)t+90), (275)

7[b1_K(}L+V)] 2\/3005112(6\/_%()(_Ct)j_(\/g_3)
0
provided A, [ — k(A +V)] <0, AjA, <Oand e = *1.
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11.1.6. Singular soliton.

q(x’ t) _)_ 10A2 1— 1 ei(—m+mt+60)’ (276)

7o =%V Bginn? [e\/—%(x - ct)j +(V5-3)

provided A, [ — k(A + V)] < 0,A,A, < 0 and e = 1.

1
sec (26 /%(X - ct)j ’
10A, | TA, ol (CrexTor8y)

C](X,t)z - - ’
7[6 = k(A + V)] J5+ 3sec(2€ /%(X —Ct)j
0

cosec (26 /%(x - ct)j
10A2 1 7A0 ei(—Kx+mr+eo)

T -kl J5+ 3cosec[2€\/§;i§(x - ct)J |

11.1.7. Periodic solutions.

(277)

N =

(278)

q(x,t) =

2 27, 2
oA sec”| € K(x —ct) ‘
ax.f) = _7 10A, 1— 0 el(—Kx+mt+60)’ (279)

(b =x@A+V] 5 (V5-3)sec’ (e\/%z(x —~ CI)J

cosec’ (e /%(x - ct)j
10A2 1— 7A0 ei(—Kx+0)f+90)
7lb = k(A + V)] 25— (\/3 - 3) cosec’ [e /i—iz(x - ct)J
0

provided A, [ — k(A +V)] <0, AjA, > 0and e = *1.

N =

q(x,1) =1— , (280)

11.2. Addendum to Kudryashov’s Method

According to this method, we balance UU" with U* in Eq. (259), one gets the same relation (146). Now, we
will discuss the following cases:

Case 1. If we choose p =1, then N = 1. Thus, we deduce that from (31) that Eq. (259) has the same formal
solution (113). Substituting (113) along with (32) into Eq. (259), collecting all the coefficients of each power of

[R((Z)]ml [R'(&)]j, (m1 =0,L2,....,4, j = 0,1) and setting each of these coefficients to zero, one gets the following
set of algebraic equations:
—4b,B + 3ABry In’ k —Bloy In’ k = 0,
4A,B,Box In*k -4 [b = k(A +V)] Bl3 - 16b2[30[313 =0,
Brotin® k + 44,87 —12[6 — (A + V)] ByB; — 246,37 — Ay In” k =0, (281)
—2A,B,B, In’ k + 8A,BB — 12[5 — k(A + V)] B(z)[-)’l - 16b2l3(3)B1 =0,
—4by + 4AB; — 4[b — k(A + V)] By — 4b,B; = 0.
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On solving the above algebraic Eqs. (281) by using the Maple, one gets the following results:
20, — Ay In’ k ey2y (Ao In” k - 2Az) 2A, + Ay In’ k
Tab V)] T 2la—k(av)] O Ik
(AgIn® k = &, )b — k(A + V)]’ . (AgIn®k + A, )(Ay In” & — 24, ]
16[b — k(L + V)]’

Bo

2:

’

(AgIn*k - 24, )

provided ¥ > 0 and € = 1.

Substituting (282) along with (33) into Eq. (113), one gets the solutions of Eq. (256) in the form:

b

1
d) = 2A, — Ay In’ k - 4eAN2y, 2 R,
2[5 — k(A + V)] 4A4° expy [(x — ct)] + xexpy [ (x —ct)]

provided (2A, — Ay In” k)[5 — k(A +V)] > O and € = *1.

In particular, if we set = 44% in (283), then we have the bright soliton solution of Eq. (256) as:

1

20, — Ay In’k 2 i Cortor+y)
1) =220 2[4+ eV2sech[(x —cr)Ink :
q(x,1) {2[[)1_]((7”_\/)][ ev2sech[(x —cf)In ]]} e

515

(282)

(283)

(284)

Case 2. If we choose p = 2, then N = 2. Thus, we deduce that from (31) that Eq. (259) has the same formal solu-
tion (119). Substituting (119) along with Eq. (32) into Eq. (259), collecting all the coefficients of each power of | R(§)]"™
[R'(ﬁ.)]j, (m2 =0,12,...,8, j = 0,1) and setting each of these coefficients to zero, one gets the following set of

algebraic equations:
—4b,B; — 40P In” k + 12A,B5x In” k = 0,
18A,BB,3 In” k — 4oty BB, In® k —165,3,8; = 0,

—165,B4B5 — Brog In” k + 16A BBy In” k — 4[b — k(A +V)]|B3 — 245,885 + 5A.B; In ky, = 0,

—12[h — k(A +V)] BlBg - 48b230[31[3§ - 16b2B?l32 +6A.3,B0x In’k =0,

—48b,3B1B, — 4A,B; In’ k + 4aB3 In® k + 4A,B5 — 24b,33B3 — 4b,B;
—12[h = k(A +V)]BBy — 12[h — k(A + V)]BB3 =0,

—6AB,B, In” k — 24[B — (A + V)| BoB/B, + 40B,B, In’ k — 165,38

= 4[h — k(A + V)] — 4858, +8ABB, =0,
—12[B, = k(A +V)]BeB, + Brovin® k + 4A,8] — A} In® k — 8A,ByB, In” k
+8A,BB, — 245,587 — 165,38, — 12[5 = k(A + V)] BoBi =0,
—2A,B,By In” k + 8A,B¢B; — 12[5 — k(A + V)] BaB, — 165,838, = 0,
~4[b — k(A +V)]B; — 4by — 4b,Bg + 4A,B; = 0.
On solving the above algebraic Egs. (285) by using the Maple, one gets the following results:

2
B :A2—2A01n2k B =0 B :G«/ZC(ZAOIH k—Az) (X:A2+2A01n2k
S —x(+v) T b—x(A+v) 2k

2 2
(480 1n° k = A, )[B = k(A + V)] p = 1643 In" k — 12404, In* &k + A3
> 3
428, In° k — A2j2 4[b - k(L +V)J

2

b

provided ¥ > 0 and € = 1.
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Substituting (286) along with (33) into Eq. (119), one gets the solutions of Eq. (256) in the form:

1
2 2
doery = [Ar =280 In kel : 4eAN2y, flrwcrarsen) (287)
b1 -k(A+V) 44 exp, [2(x — ct)] + xexp, [-2(x — ct)]
provided (A, — 2A, In” k)[B — k(A + V)] > 0.
In particular, if we set = 44% in (287), then we have the bright soliton solution of Eq. (256) as:
1
A, —2A,In° k R E——
x,1) = 4222200 2N 4 eV2sech[2(x — cf) Ink 2 (288
a(x,1) {bl—lc(k+v)[ [2(x - er) ]]} )

Similarly, we can find many other solutions by choos-
ing other values for p and N .

12. GENERALIZED ANTI-CUBIC LAW

For the generalized anti-cubic law nonlinearity,
we have

b

n+l?

F(0) =bo" +5,0"" + (289)

where b, b, and b; are constants. Equation (1) corre-
sponding to generalized anti-cubic law nonlinearity
(289) is given by:

2
. . n n b
iq, +iaq,,, + {b1|q|2 + b2|q|2( D +| |2(2'+”Jq = (x‘qx‘
q

ai af), () ]+ oo

+ i{&[x +Mla"g) +u(lal") g + qulz'"qx}
where Eq. (41) reduces to:

A" — 00> = Ay — (A +v) ™"

2n+2 2n+4 -2, (291)
+ b0+ b0 + b0 = 0.

For integrability, one must select n = m. This leads to
the modification of Eq. (1) corresponding to anti-
cubic law nonlinearity as:

. . m m b
1q, +1aq,,, + [b1|41|2 + b2|‘]|2( " |q|2(f3n+l)jq
2
qx ’
ol P [2|q| (1), ~{(1a’) } }+ Y (292)

+ I[qu + 7»(|q| q)x + u(lqlzm)xq + VIqlz'"qx]
Consequently, Eq. (291) becomes:

A0¢2m+1¢.. _ a¢2m¢v2 _ A2¢2m+2

(293)
+[b = k(A + V)] 0" + by + b, = 0.
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Balancing ¢"""'¢" and ¢*"** in Eq. (293), gives the

balance number N = Ll Since the balance number

m+
is not integer, then we take into consideration the

transformation

0E) = [UETm, (294)

where U () is a new function of . Substituting (294)
into (293), we have the new equation

(m+1)AUU" — (mAy + ) U

+ (m+17[bh — k(A +V)] U4":++12 (295)
+ (m+1)[b; = AU + bU* [ =0,
For integrability, one must select
b =xk(A+V). (296)

This leads to the modification of Eq. (1) correspond-
ing to generalized anti-cubic law nonlinearity as:

iqt + iaqxxx + (K(A’ + V)|q|2m + b2|q|2(m+l) + | |21()3n+1)Jq
q

- olth B faet(ar), - {l) )] e

q*
+yg+i {qu + MJal” q)x + u(lqlz'")xq + qulzqu]
Consequently, Eq. (295) changes to:
(m+1)AUU" = (mAy + o)) U
+ (m+1)’[b, = AU + U [ = 0.

In the next two subsections, we will solve Eq. (298)
using the following two methods.

(298)

12.1. New Mapping Method
According to the new mapping method, we balance

UU" with U* in Eq. (298) yields the balance number

N =1. Now, from (6), the solution of Eq. (298) has
the same formal solution (90). Substituting (90) along
Vol. 66
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with (7) into Eq. (298), collecting all the coefficients

of F'(E)[F '(é)]j (/=0,1,...,8, j =0,1) and setting them
to zero, we have the following algebraic equations:

§A05§ms +m’b,d; — gasﬁi
+ 5,8+ 2mb,S) + §A08§s -0,
3 37 4
4b28182 + Smb28182 + §A061m62s - E(XSSISZ

+ %Aoalazs + 4m2b2816; = 0,

Am*b,8,5 — %asaf +3A,52h
+ §A080m82s + 8mb,8,5) + %Aoﬁfms + 6mb, 8252
+ 65,5782 + §A08082s +12mb,8°8, — 2045
+ ASs + 45,8,8) + Aydomh = 0,

—20h8,8, + 2A,8,mB,h +12m°b,5,8,5;
+ AgSymd,s + 4A,8,8,h + 125,8,8,5
+ 4m’b,88, + 4b,8,0, + 8mb,5, 9,
+ 24mby0,5,8; + AySyd,s = 0,

4A085p + 308,0,h + ASih +12m°b,8,875,

517

8mb,8,0, + 12mb,d58; + 4m’ b3,
— A+ 6m’hoed — 2A,8,5,
— 20, 8omr + 4A8,8,p — m* A
— 4mA,3,S, + 20,00r + A p — 0P,
+ 4A,8,mB,p + 46,50, + 65,85,

— 4ard; — 2m°A,8,8, — 2mA,S; = 0,
—2A8,mbr — 2m*A,8,8, — 4mA,,d,
— 2A,8,8, + 8mb,5;8, + 2A,8,8,r
+A8,0,p + 4b,8,8, + 4m’b, 8.3,

+ AyO,md, p — 40urd,0, = 0,
2bym + bym” + by + 2mb,S; — m’ A5,
+ m2b283 + 2A,0,0,r — Aomr8,2
—A,S; + byS; — ourd — 2mAS) + 2A8,md,r = 0.

With the aid of the solutions (8)—(29), we have the fol-
lowing types of solutions:

3, 16y’
16p° 27h°
algebraic Egs. (299) and solve them by Maple, one
gets the following results:

226,(33 - /33

Type 1. Substituting s = r into the

80 = - € y 61 = 0,
+ 3A,8,mB,h + 125,8,8°8, + %Ao&zmh 3(11++33) A,
+ b8t — 2mALS: + 12mb,528: - chhs 226;(33 - V33
1 2 4 2 24(m + DA, A, (300)
+ 6m’b,5:85 — 4apd + 2mb,d; = 0, (299) (11-+33]A,° ’
5A8,8,p + AySmd,p + 12m°5,528,8, 6(11-+33)A3 |
; by=——"J2 o=1(m+3)A,
- 4mA28182 - 2A26182 + 8mb28061 11(33 - \/ﬁ) b3 2
— 2m’A,8,8, + 24mb,5;8,8, + AySymd,h
1020102 T RO T SO provided byA, > 0, A, # 0 and € = +1.
+12b6,040,0, + 4m"b,0,90; . i i
3 If we substitute (300) along with (8)—(12) into
+ Ay8y0,4 + 4b,8,8] — 40pd,6, = 0, Eq. (90), then Eq. (297) has the following solutions.
12.1.1. Soliton solutions.
1
2(1 A m+l
-3+ (6 + \/ﬁj tanh’| e w(x —ct)
| 22b,(33 - /33 (11-+33)A, P,
q(x,1) = e Y (301)
3(11++33) A, o [2(1+m)A,
3+ tanh”| € [———=—(x —ct)
(11-+33) A,
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and

401 = 3(11 + Jﬁj A,

2(1+m)A,

1
2(1+m)A i
—3+(6++33)coth’| e |[-~——2=2 (x -
| 226,(33-33) *+(6+¥33Jeot [e\/(ll—@)Ao(x Ct)] —
e ", (302)
(x—ct)

provided AyA, > 0,5A, >0 and € = 1.
12.1.2. Periodic solutions.

3 + coth? (e 1(—

3

|

(11-33)4,

1

I 2(1+m)A |
3+ (6+433)tan?| e |- 2LEMA (o
| 226,33 - /33 (11-+33)4, Hrrrorety)
q(x,1) = 7. (303)
3(11++33) A, ) 2(1+m)A,
3—tan"| € |-———=——(x—ct)
(11-+33)4,
and
_ R
2(1 A m+l
3+ (6 + «/ﬁjcotz € —w(x —ct)
| 226,(33 - /33 (11-+33)A, P,
q(x,1) = e ", (304)
3[11+x/§j A, 5 2(1+m)A,
3—cot’| € |[-——==—(x—ct)
(11-+33) A,
provided A)A, < 0,5A, >0 and e = 1.
35 and
Type 2. Substituting s = 165’ r = 0, into the alge-
D
braic Egs. (300) and solve them by Maple, we get the q(x,1) = 2mb;
following results: ’ GBm+2)A,
(307)

S =€ %, 8 =0,
Gm + 2)A,
_emhA,

f 2mb;
62 - 2 9
(m+1)y"A, \Gm +2)A,

2
p:(m+l)A2, h=h
mA,
2 2)A;
bz=—(m+ )(3’21” )4 0c=(m+l)A0,
4m”b,

(305)

provided A, >0, A, # 0 and € = 1.

If we substitute (305) along with (14) and (15) into
Eq. (90), then Eq. (297) has the following solutions.

12.1.3. Dark and singular solitons.

_)|_2mb
g% = {\/ Gm + 2)A,
(306)

g
X tanh [S(m +1) ﬁ(x _ Ct))} * el( Kx+cot+60)’

mA,
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1
(X _ ct)j}m'H ei(*l(x+(,0t+eg)

respectively, provided A,b; > 0, AjA, > 0 and € = £1.

X coth (E(m +1) A
mA,

Type 3. Substituting » =0, into the algebraic
Egs. (300) and solve them by Maple, we get the fol-
lowing results:

80: 7_b3, 8120, 82:2 7_b3,
3A, 3,

__(m+DA, _ 24(m+DA,
144, 78, (308)
po _12m+DA, _ 1247
70, 0 49,
o= %(m +3) Ay,

provided b;A, > 0, A, # 0.

If we substitute (308) along with (16)—(29) into
Eq. (90), then Eq. (297) has the following solutions.
Vol. 66
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12.1.4. Soliton solutions.

1
m+1
= 3sech’ (e /—%(x - ct)]
=J [1B11= 0 i(—1x+01+0p)
q(x, 1) = ’3A 1 5 e , (309)
? 18—2{1 +tanh(e I—%(x—ct)ﬂ

1
3cosech’ (e /—M(x - ct)j "
?% 1+ 14'A0 - ei(—lcx+mr+eo), (310)
18- 2[1 + coth (e /—%(x - ct)ﬂ

_ sech’ (e /—M(x - ct)j ]
7b3 _ 14'A0 ei(—Kx+mt+eo) (311)

90 =137 |1
’|  6-—4tanh [e\/—%(x - ct)j

q(x,1) =

|98

3cosech’ (e /—w(x - ct)j "
14'A0 ei(—lcx+wt+90) (312)

1+ ,
- _m+ DA
6 —4coth (e\/ T4A, (x ct))

N
S

q(x,1) =

(98]
s

provided A,b; > 0, AjA, <0 and e = %1.
12.1.5. Bright soliton.

m+1

g(x,1) = /% 1— 1 ei(—lcx+wt+e(,), 313)
2| J5cosh| 2e —M(x—ct) +3
144,
and
L
m+l1
g(x,1) = % 1— ( 1)1A ei(—lcx+mt+eo)’ (314)
\3A, 2 m+ DA,
23/5cosh (e —W(x - ct)j - (\/g - 3)

provided A,b; > 0, AjA, <0 and e = +1.
12.1.6. Singular soliton.

m+l

q(x,t) = /% 1+ ( 1)1A et (315)
2 .12 m+ 2
24/5sinh (e —W(x - ct)j + («/g - 3)

provided A,b; > 0, AjA, <0 and e = +1.
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12.1.7. Periodic solutions.

1
+ DA m+1
sec| 2e /(m—z X — ctJ
( 14'AO ( ) ei(—}cx+wt+90)

aten) = 3% ' (m + DA ’ G
2 «/§+3sec(2e —zx—ctj
Tan, X

1

Z cosec (26 [%(X - ct)} i
ax.f) = 3% 1— : (:_ = ei(—loc+wt+90)’ (317)

2 m 2(x —
5+ 3cosec (2& T4A, (x ct)j
1
sec’ [e /%(x - ct)] ’
(x t) ;Zg, 1— 0( I)A i(—1cx+wt+90)’ (318)
2 m+ > _
25— («/_ 3)sec (e\/—l 1A, (x ct)J
1
cosec’ (e [%(x - ct)j ’
( t) _ ;)723 1— 0( I)A ei(—K:x+wt+90), (319)
2 m+ 2 _
25— (I 3 cosec (e T4A, ct)j
provided A,b; > 0, AjA, > 0 and e = £1. —AB; + AP In’ k —Bloln’ k
Hom BB + 12mb i —m AR
12.2. Addendum to Kudryashov’s Method + 6b,BPr — 2mAB; =0,

According to this method, we balance UU" with U 4
in Eq. (298), one gets the same relation (146). Now,
we will discuss the following cases:

Case 1. If we choose p =1, then N =1. Thus, we
deduce that from (31) that Eq. (298) has the same for-
mal solution (113). Substituting (113) along with (32)
into Eq. (298), collecting all the coefficients of each
power of [RE)]™ [R'E)], (m =0,1,2,...,4, j =0,1)
and setting each of these coefficients to zero, one gets
the following set of algebraic equations:

m' b — ABrmy In® k + 2mbf; + b/
+ Broy In® k = 2A By In’ k = 0,

—20,BBymy In k + 45,887 + 8mb,B;
— 2ABBox In’ k + 4m’b,BB; = 0,

=2m’ABoB; + ABBem In® k + 4b,B3B,
+ 4m2b2[33[31 + AoBiBo In® k

— 20,308, — 4mA,BoB, + 8mb2[33[31 =0,
+b,Bg + 2mb; + m’by + by + m b,y
—2mABy — APy — m*ABe + 2mb,By = 0.

On solving the above algebraic Egs. (320) by using
the Maple, one gets the following results:

(1+m)b3 B = 21+ mygh,
Py 1 k : 1 k 3A,
AyIn’ k 3A; In* (321)
:—<m+3)Ao, Ay =SR2 py = 20
1+ m 16( +m)’ b,

provided Agh; > 0,% >0 and e = 1.
Substituting (321) along with (33) into Eq. (113),
one gets the solutions of Eq. (297) in the form:

doeny =12 [CEmbil
Ink\ 34,
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46/4\/5( ml e (—ox+ar+6y) (322)
447 exp, [(x — ct)] + yexpy [ (x — c1)]
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In particular, if we set = 44% in (322), then we have the bright soliton solution of Eq. (297) as:

1
2 |+ m)b, M+l (et or+6,)

X, ) = — [——= 1+ ev2sech[(x — ct)Ink e . 323

g(x,1) {mk . [ [(x = cr)Ink]] (323)

Case 2. If we choose p = 2, then N = 2. Thus, we deduce that from (31) that Eq. (298) has the same formal solu-
tion (119). Substituting (119) along with Eq. (32) into Eq. (298), collecting all the coefficients of each power of [ R(€)]™

[R'(i)]j, (m2 =0,L2,..,8, j= 0,1) and setting each of these coefficients to zero, one gets the following set of
algebraic equations:

—4A, In® kBomy — 8A, In” kBox + By + m’b,Ps + 2mb,Ps + 41n” ko ps = 0,
4m’b,B,B3 — 1A, In” kB\Byx + 45,885 + 8mbyB,B; + 41n” ko BB, — 7A, In” kBymB,y = 0,

12mb,BB3 + 4b,B0B5 + 6b,BB3 — 8A, In” kBoByyx + 8mbyBB; + In” kouyBr
— 2A, In” kBimy + 6m° bR — 3A, In” kB, ~ 2y + 4m " 2b,B,B, * 3 — 8A, In” kPymP,y = O,

Smbzﬁfﬁz —3AIn’ kBoBix + 4b2Bl3B2 + 12bzﬁol31[3§ + 4m2b2[313[32 + 12m2b2[30[31[3§
= 38 In” kBomPyy + 24mb,B,BB; = 0,
2mb,By +12mb,BiB; + 60,83 + by — 41n” kap; +m byl — A5 +6m’b,Bif
+ 12b2B0l312B2 - m2A2[3§ +4A, In’ kB% = 2mAB; +12m’°b,BoBiPB, + 24mb,B BB, =0, (324)
—2m’A,B\B, — 2A,B,B, — 41n’ koBB, + 24mb,BoBiB, + 126,35B,B, + 5A, In” kBB,
+ 4m’byBoB; + 4By + 12m°0,BoB B + 8mbyoB) — 4mABB, + Ay In” kBymP, = 0,
46,3, + 440 In” kBymBy — 28,BB, + 6m’bBBY — APy —In’ kapy + 12mbyBify
— 4mABB, + 4m’ BB, — 2m’ AR, — 2mAB; — m*AB} + Ay In” kpY
+448, In” kByB, + 8mbBiB, + 60,BBr = 0,
45,3y + Ag In® kBoBy — 2A,B0B; — 2m°A,BB; — 4mABoB, + 8mb,BiB,
+Am’ BB, + A, In” kBymP, = 0,
—2mABy + 2mby — m APy + m’ by + m’by + 2mb; + by — ARy + By = 0.
On solving the above algebraic Eqgs. (324) by using the Maple, one gets the following results:

Bo =S [ =0, By =S PEEIIR o= L3,
ln Ink 3A, 2 (325)
A _4A,In’k 5 _3A§1n4k
2 1 +m ) 2 (1 i m)2b3 )

provided Ayb; > 0, % > 0 and e = 1.
Substituting (325) along with (33) into Eq. (119), one gets the solutions of Eq. (297) in the form:

1
q(x,t)={L L+ m)b, {1+ 4ed2y }mﬂ e/lmrrorté), (326)
[-2(x —ct)]

Ink\ 34, 447 expy [2(x — ct)] + xexp, [

In particular, if we set y = 44%in (326), then we have the bright soliton solution of Eq. (297) as:

1
1 (1 + m)b, M+l (Coetor+6,)
x,0) =4 —— [T 4 eddsech[2(x = cf) Ink e . 327
g(x.1) {lnk el [2(x—er)Ink]] (327)

Similarly, we can find many other solutions by choosing other values for p and N.
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13. QUADRATIC-CUBIC LAW

For the quadratic-cubic law nonlinearity, we have

F(¢)= bl\/6 + by,

where b, and b, are arbitrary constants.

(328)
Equation (1) corresponding to quadratic-cubic law
nonlinearity (328) is given by:

g, + 10 + (B1a] + blaf ) = a?

e 26 ) ) Y e
+i {qu + %(Iqlz'"q)x + u(lqlzm)xq + qulz'"qx},
where Eq. (41) reduces to:
Agdd" — 0d* = A,0” + b (330)

— k(A + V)" + bo' = 0.

For integrability, one must select m = 1. This leads to
the modification of Eq. (1) corresponding to qua-
dratic-cubic law nonlinearity as:

i+ 10 + (o] + Bfaf) = aj

+ e *[2|q| (1) {(Iqlz)x}z} tyg (33D
+i {qu + x(|q|2q)x - M(|q|2)xq + V|q|2qx}
Consequently, Eq. (330) changes to:
A" — ad* = A,0° + b’ (332)

+ [y — k(A +V)]o* = 0.

In the next two subsections, we will solve Eq. (332)
using the following two methods.

13.1. New Mapping Methos

According to the new mapping method, we balance

0" with qf‘ in Eq. (332) yields the balance number
N =1. Now, from (6), the solution of Eq. (332) has
the same form (48). Substituting (48) along with (7)
into Eq. (332), collecting all the coefficients of
F'E[F' ) (¢=0.1,...,8 j=0,1) and setting them
to zero, we have the following algebraic equations:
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—§a5§s + [ - k(A + V)] 8+ §A05§s =0,
4[b, — x (A + V)] 5,5,
+ %A()S]SZS - %O(&st = O,

—%ocﬁfs + 58 +6[b, — k(L +V)] 88

+ 4[b, — k(A + V)] 8,8, — 20085/ + AySis
+ 300828 + §A08082s =0,

4A,8,8,h — 20.8,8,h + 3b,8,5,
+ 4{8}8, +35,5,821 [by — k(A + V)] + AySyd,s =
—40i85p — A,S; + 6[b, — k(A + )] 855,
- %asfh +4A2p + 368,82 + Ay h

+12[b, — k(A +v)]8,8:8, + 35,85,
+ [by — k(A + V)] &) + 34,884 = 0,
AgdySih +12[by — (A + V)] 5;8,8,
+ 65,0,0,0, + 5A,0,0,p — 2A,0,0,
— 4018,5,p + B, + 4[b, — k(A +V)] 8,8 =0,
6[b, — k(A +V)]858; — ad; p + AyS; p
+ 400808, — 2A,8,8, + 4[b, — k(A + V)] 5,
+36,8,87 — 4085r + 2A,85r + 36,808, — A8, = 0,
AoSyd,p — 4018,8,r — 2A,8,8, + 35,5:9,
+ 208,80, + 4[b, — k(L +V)] 88, = 0,
—ourd; +[b, — k(L +V)] &
— Ao + B8y +20:8,8,r =0

With the aid of the solutions (8)—(29), we have the fol-
lowing types of solutions:

(333)

3, _16p°
16p 27h°
algebraic equations (333) and solve them by Maple,
one gets the following results:

A
8 =€ |—=2 . § =0,
C 3\ —k(A+v)

Type 1. Substituting s = into the

eh, A, A,
62 = ) p =
h=h o=2A,
2
5 _de[b, — k(A +V)] A,
! 3 b, — k(A +V)
provided A, [b, — k(A +V)] >0, A, # 0 and € = £1.

If we substitute (334) along with (8)—(12) into
Eq. (48), then Eq. (331) has the following solutions.
Vol. 66
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13.1.1. Soliton solutions.

s f>-a/

1—tanh / —ct) (335)
% ( 6A0 j Kx+u)t+90
A
3 + tanh’ e\] =2 (x —ct)
[
and
A,
x,t) =€ ————
a0 b, —x(A+vV)
A,
1 —coth Ee /—— —ct) j (336)
x 6A0 j(—1oc+01+6))

e ,
+ 2 __A2 —
3 +coth (e\/ 6 O(x ct)j

provided A, [b, — k(A +V)] >0, AjA, <Oand e = 1.
13.1.2. Periodic solutions.

x, 1) =€ A
a0 = K(A+V)
1+ tan (e —2(x—ct j (337)
X 1cx+wt+90
3 —tan (e —(x—ct ]
and
g(x,1) =€ A
—xk(A+vV)
1-cot —ct (338)
( 6A0 )J 1cx+oot+60
X
2
3+ cot ( 6A0 ct j
provided A, [b, — k(A + V)] > 0, AjA, > 0 and e = £1.
2
Type 2. Substituting s = %, r =0, into the alge-

braic Egs. (333) and solve them by Maple, we get the
following results:

5 € 3
U3\ b -x(A+v)
5, = < 34,
20, \ b —k(A+V) (339)
p=-Br pop a=24,
6A, 2
b= 4e[b, — k(A + V)] 3A,
3 b, —k(A+V)

provided A, [b, — k(A +V)] <0, Ay # 0 and € = 1.
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If we substitute (339) along with (14) and (15) into
Eq. (48), then Eq. (331) has the following solutions:

13.1.3. Dark and singular solitons.

3A
1t —5/ —
90x1) 6 K(A+V)

(340)
X {1 + tanh (e\/i( - ct)ﬂ Skt
6A,
and
glx, ) =< _$
6 -x(A+v) (341)

X {1 + coth (e / —ct ﬂ KHU’HSO

respectively, provided Az[ —K(A+V)]<0,AA, <0

and € = 1.
Type 3. Substituting » = 0, into the algebraic equa-

tions (333) and solve them by Maple, we get the fol-
lowing results:

80 = E - 3A2 > 1= 05
5, = <y [ 3, -
2A - ’ Ay’
) 2 b, —x(A+vV) 6A, (342)
s= 2B p_ g g =34,
8A, 2
b :_4e[b2—x(k+v)] i 3A,
3 b, — k(A + VY
provided A, [b, — k(A + V)] < 0,A, # 0 and € = 1.

If we substitute (342) along with (16)—(29) into
Eq. (48), then Eq. (331) has the following solutions.

13.1.4. Soliton solutions.

a1 = e\/_3[1;2 k(L)

]
2 A,
2sech (e /—J(x - ct)] (343)
x|1= 0 . ei(—Kx+wt+90)’
I_ A
4 {1 + tanh [e 6A, (x ct)ﬂ
A,
x,0) =€ |-
aen \/ 3[b, = k(A +V)]
2cosech’ (e -—2(x- ct)j (344)
6A0 i(—1oc+0r+8;)
X |1+ 5 le ,
|_ A
4 [l + coth (e 6A, (x ct)ﬂ
Vol.66 No.5 2021
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x,1)=¢€
axh = \/ 3[1;2 K ( x+v)]
sech ( I ( —ct] (345)
% i(—1x+wr+8y)
& _ ’
2+2tanh(\/ 6A0 ctj
X,t) =€
e 1) = J 36y — % k+v)]
cosech [e /—ﬁ( - ct)) (346)
6A0 i(—1ox+wr+8y)
x| 1+ 3 e ,
— 2 (yx —
2+ 2coth (e\/ 67, (x ct)j
provided A, [b, — k(A + V)] <0, A)A, <Oand e = £1.

13.2. Addendum to Kudryashov’s Method

According to this method, we balance ¢¢" with ¢4
in Eq. (332), one gets the same relation (70). Now, we
will discuss the following cases:

Case 1. If we choose p =1, then N =1. Thus, we
deduce that from (31) that Eq. (332) has the same for-
mal solution (71). Substituting (71) along with (32)
into Eq. (332), collecting all the coefficients of each

power of [RE]" [RE)]), (m =0,1,2,...,4, j =0,1)

elnk 6A,
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and setting each of these coefficients to zero, one gets
the following set of algebraic equations:

aBryIn® k — 2087 In’ k +[b, — k(A +V)]B/ =0,
BB — 2A0BBox In’ k + 4[b, — k(A + V)]BeBi =0,
—aB; In” k + 35BB; — AP
+ ABi In’ k +6[b, — k(A +v)]BB; =0,
—2ABB; +4[b, — (A + V)]BéBl
+ 3blB(2)Bl + AgBiBo In*k = 0,
+[by = k(A +V)]By + BBy — A = 0.

On solving the above algebraic Egs. (347) by using the
Maple, one gets the following results:

(347)

B, _elnk 6A, ’
2 \b-x(A+v)
B, _elnk 6Y A, ’
2 \b,—x(A+v) (348)
b _ _4e[by —x(A+V)]Ink 6A,
3 b, — k(A +V)

A, :—ngln , a_EAO,
provided (b, — k(A +V))A, > 0,5 > 0 and e = £1.

Substituting (348) along with (33) into Eq. (71),
one gets the solutions of Eq. (331) in the form:

4eANfy

i(—1x+ 07+
ol o)

(349)

q(x,1) =

In particular, if we set x = 44’ in (349), then we have
the bright soliton solution of Eq. (331) as:

elnk 6A,
2 \b—x(A+v)
X {1 + esech[(x —ct) Ink]} ofrrror 0]

Case 2. If we choose p =2, then N = 2. Thus, we
deduce that from (31) that Eq. (332) has the same formal
solution (77). Substituting (77) along with Eq. (32) into
Eq. (332), collecting all the coefficients of each power of

[REOT™ [RE). (m, =0,1,2,....8, j = 0,1) and setting

each of these coefficients to zero, one gets the follow-
ing set of algebraic equations:

9051 = (350)

[b, — k(A +V)]B; + 4oy B> In’ k
— 8ABxIn" k =0,
4[b, — (A + V)]BIBZ + 4oy BB, In’ k
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I+—
2 \b—x(A+Vv)] 44 exp,[(x

—en)]+ g expy [ (x—en)]

—11ABBxIn" k =0,
—3ABrxIn’ k + ofry In’ k — 8AByB,x In” k
+ b3 +2[by — (A + V)] 38783 + 28,83 | = 0,

=3A,BBox In” k +12[b, - k(A +V)] BoBiB>
+ 36B,B; + 4 [, — k(A + V)IBiB, =0,
—AB5 + 4A0B; In” & + 35B,B;

+ 3b1B12[32 +6[b, — k(A +V)] Bgﬁg
+12[B, — k(A + V)] BoBiB, — 403 In’ k
+ [y — k(A +V)]B =0,
6b,BoBiB, — 2A,B,B, + b

k(A +v)] BOB B, +4[b, —x(A+V)] B0B1
+ 5088, In”k — 4afB, In” k =0,

—AB; — o} In’ k + 4488, In” k + 35:B,

(351)

+12[b,
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+ AB; In’ k +4[b, — k(A + V)] BoB,
+ 6[b, — (A + V)IBIBT + 36,BoBT — 24,88, =0,
=208, +4[b, — k(L + V)] BB,
+ 36B3B) + ABiBy In” k =0,
—ABy + bB; + [, — k(A +V)] = 0.

On solving the above algebraic Egs. (351) by using the
Maple, one gets the following results:

=¢ | ————Ink,
Po e\/b2 -xk(A+V) "

525
6XAo
—e|—K20_ng,
br=e b, —x(A+vV) !
b1:_86[b2—1<(7u+v)]1nk 6A, 352)
3 b, —x(A+vV)

A, = —10A, In’k, o = %AO,

provided (b, — k(A +V))A, > 0,5 > 0 and e = £1.

Substituting (352) along with (33) into Eq. (71),
one gets the solutions of Eq. (331) in the form:

g(x,1) = elnk 0A, +— 4edyx (moctar+6y) (353)
—K(A+V)| 44 exp, [2(x —ct)] + xexp [-2(x —ct)]
In particular, if we set = 44” in (353), then we have . > 4 > .
the bright soliton solution of Eq. (331) as: 1q; +10G o + [b1|q| + b2|q| + b3(|q| )xj q=0—r
6A 2\ 2
x,f)=€elnk |——0— + [ I\ q }ﬂ(q (358)
oSG e e )., - {()
6o
x {1+ esech[2(x —ef) In k} e, +1\3g, +Mafq)_+u(aF) g +Viala.
Similarly, we can find many other solutions by choos-  consequently, Eq. (357) becomes:
ing other values for p and N . ,
" 12 3 2,
M0 - 067 + 260" + 00|

14. PARABOLIC NON-LOCAL LAW

For such nonlinearity, we have

F(0) = bo + byo + by(0) s

where b, b, and b, are constants, such that the coeffi-
cients of b, and b, constitute parabolic law while the
coefficient of b, stems from non-local nonlinearity.

Equation (1) corresponding to parabolic—nmon-
local law nonlinearity (355) is given by:

(355)

2
iq, +iaq,., + [b1|q|2 + b2|q|4 + b3(|q|2)qu = oc@

o b aat(af), ~{(aP) } |+ G50
+i [qu + %(Iqlmq)x + M(Iqlz"')xq + qulzqu},
where Eq. (41) reduces to:
M0 - 067 + 2600 + 007

— A"+ Bt — k(A + V)0 + 50" = 0.

For integrability, one must select m = 1. This leads to
the modification of Eq. (1) corresponding to para-
bolic—non-local law nonlinearity as:
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— A+ [ — k(A +V)]o" + 50" = 0.

In the next two subsections, we will solve Eq. (332)
using the following two methods.

14.1. New Mapping Method
According to the new mapping method, we balance

¢3¢" with (p6 in Eq. (359) yields the balance number

N =1. Now, from (6), the solution of Eq. (359) has
the same form (48). Substituting (48) along with (7)
into Eq. (359) collecting all the coefficients of

F (&)[F (&)] (l =0,1,..,12,j = 0,1) and setting them
to zero, we have the following algebraic equations:

26b36 625 + 6b28 82 = 0,
?b3812s8§ + 106,054 + 6b,5,8;
+ 6?41;383_;80 +155,8°8" = 0,
32b,8,53h +

+%b3816§s80 + 205,578 = 0,

4?6b3513s62 +305,8,8,5

Vol.66 No.5 2021



526 ELSAYED M. E. ZAYED et al.

3TB,57HS: + 5?6b36§s8§ + §A08§s
+ [ — k(L +V)]8; + §1938j‘s
24 104, «2
+ 16b362p + 15b28 8 - —(1825 + _b36 56082
+ 26b,8h8, + 15b26462 + 60b2606263 =0,
605,5,5:52 + L1 3 LA8,8,5 + 65,538,
+ —b36 8,58; + 605,5:8,5, + 185,5,hd,
+ 4[5 — k(L +v)]8,5 + 2—32b35fs50
- 505:8,80p + 58b,8,52h5, — goc?)l?)zs =0,
5658282 + 206,5.5; + §A06062s
+4[b - k(A + V)] 8,5) — 1048,2s + A + 405,33 pS,
+16 b382563 + 36,8/ h — 2085k

+ 6[ = KA+ V)] 8185 + 34,85k
+ 5,80 +305,8,80, + 126,857 + 226,855,
+ 4058, 18,8, + 90b,8,5;0; + (20/3)b,8/58; = 0,
28b,8,8,hd; + 26b;5; pd, + 65,8,5;
+ 366:8,85r + 4[b, — k(A +v)]5}5,

+ 4A S p + ThSIhS, + 38b,r8755 + Adih
— 4085 p + 300008, + 6B — k(A + V)] 8555
+ 458! p + 156,885 + 325,85 pSp + 285,838,

+[B = k(A +V)] & +12[h — (A +V)]5,5;8,
— A,S) + 606,8,5.8, = 0,
306,848,8, + 4[b — k(A +v)] 8,5,
+ 56b,8,85r8, + 1068, pd, + 205,85,
+ 58,8, p + 38b,8,8,p8¢ + AS,0,h
— 2A,8,8, + 2b,5,hd;, + 16b,r8.3,

+12[b — k(A +V)] 88,8, — 40:5,8,p = 0,

40837 + 32b,r878,8, + 8b;0, pd; + 85,8, pd;
— 2A,8,8, + 6[b — k(A + V)] 88}
— O p + 4A8yS,p + 2A,85r + 268!

+ 4[b — k(A + V)] 838, + Ayd; p + 156,88,
+ 65,58, + 205,518 — A,S; =0,
ApSodp + 4[b — k(A + V)] &3, + 205,8,8,r5;
+ 4byr8.8, — 2A,8,8, + 2A,8,8,r
+ 25,8, p8; — 408,58, + 65,878, = 0,
—AS; — ord; + b5y + [ — k(A +V)] S,

+ 20,88, + 26,1878, + 45,8, = 0.

+ 8.8 NS — 2008:8:5 + 25:6.55. + A With the aid of the solutions (8)—(29), we have the fol-
ST 172 > 2' 0 070 (360) lowing types of solutions:
+ 12[b1 - K(}\. + V)] 806182 + 4A06162h

+865,8, 2p50 + 605,528:8, + 605,8:5,82 = 0, Type 1. Substituting s = % r =0, into the alge-
31 o2 2q4 braic Egs. (360) and solve them by Maple, we get the

6b,0,hd; (x6 h+ 56b36 Pp&,0, +15b,0,9, following results:

5 - E\/ 3s[h k(A +V-BA o s 6ehb; \/ 3by [ — k(A + V)] = BA,
) b,b, T T 3 [ — k(M + V)] - b, b,b, (361)
_ 3bs [6 — k(A + V)] - byA, 3B [B = k(M + V)] = A} b3 [b = x (A + V)] + bon}

L h=h o=0, A=
24b?

provided {3b;[b — k(A + V)] -

b2A0} b2b3 < 0 al’ld € = il

165,b?

If we substitute (361) along with (14) and (15) into Eq. (48), then Eq. (358) has the following solutions.

14.1.1. Dark and singular solitons.

den) = € J_ 3by[b - k(A + V)= bA [e \/3b3 [6 — x (A + V)] = bA, (x— ct)] Jerorst) (362)
2 b,b, 241
and
2 b,b, 24b3

respectively, provided 3b; [5, — k(A + V)]
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_bZAO > O, b2b3 < 0 and € = il
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Type 2. Substituting » = 0, into the algebraic Egs. (360) and solve them by Maple, we get the following results:

5, = € \/_3b3 (b — k(A + V)]~ b 5 =0, 5 = 6ehb; \/_31)3 [6 = <0+ V)] = Ay
2 byb, 3b,[b — k(A + V)] = byA, byb,
» _ 3bs (6 — k(A + V)] = byA, = 9n’b; heh (364)
24b; ’ 2{3b,[b — k(A + V)] = bA,) ’

{36 [B = k(A + V)] = A [B = k(A + V)] + bA}

oa=0 A,=
2 166,52

If we substitute (364) along with (16)—(29) into Eq. (48), then Eq. (358) has the following solutions.
14.1.2. Soliton solutions.

_e | [ -kt V)] -hA,
Q(xat) - 2\/

bybs
asech?| e 22 (6~ x(h tv)] ~ bl (x —ct) (365)
24b3 i(—kx+mr+8;)
X 1 - 2 2
4—|1+tanh|e 36 [h — k(1 +2V)] = b (x —ct)
24)
3by (b, — x(A+ V)] - bA
ax.t) =€ |- 5 [6 = x( )] = b4
2 b,b,
4cosech’ [e\/3b3 [b = k(A +2V)] ~ bl (x— ct)] (366)
w1+ 24b3 . i(—lcx+mt+60)’
4—|1+coth|e 36315 = k(A tv)] ~ b, (x—ct)
24p]
3by (b, — x(A+ V)] - bA
ax.t) =€ |- 5 [b - x( )] = bA
2 b,b,
sech’ (e\/3b3 [ = k( +2V)] ~ b (x— ct)j (367)
“|1- m [bl 21‘-;)5 )] — ei(—Kx+wt+eo)’
-xk(A+V)]-
1+ tanh| e |— > ’ 0(x—ct)
24
M x A cosech’ (e\/3b3 L K(;;-ZV)] w2l (x— cf)]
q(x,1) = 5\/— s (b K(b b+v)] 2004 oA xb3 — ¢!l (368)
ol 1+ cothl e s (6 — x( *;V)]_ 220 (o)
24}
provided 3b; [5, — k(A + V)] = b,Ay > 0,b,b; < 0 and € = 1.
14.2. Addendum to Kudryashov’s Method solution (71). Substituting (71) along with (32) into

. . 3 . ¢ Eq.(359), collecting all the coefficients of each power of
According to this method, we balance ¢”¢" with ¢

in_ Eq.' (359), one gets Fhe same relation (70). Now, we [ R(&)]m‘ [ R-@)]f , (m1 =0,1,2,..,6 j= 0,1) and setting
will discuss the following cases:
Case 1. If we choose p =1, then N =1. Thus, we cach of these coefficients to zero, one gets the following

deduce that from (31) that Eq. (359) has the same formal set of algebraic equations:
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by —6bBixIn" k =0, 65,3 —165BxBy In” k =0,
156,858, + 4b,B; In” k —14b,87xB; In” k + afry In® k — 2A,B7x In” k + [b — k(A +V)]B/ = 0,
106,87B, In® k + 4[b = x (A +V)] BT — 2A,BBox In* k + 206,887 — 4b;B,xB; In® k = 0,
—AB; + ABLIn’ k + 6B — k(A + V)| Befr + 156,887 + 85,B1B; In” k — oy In’ k = 0,
~28B; + 4[5 — k(A +V)]BoBy + APy In” k + 26,8,B; In” k + 65,3, =0,
—A,B; + [b —w (A + V)]B?) + szg =0.
On solving the above algebraic Egs. (369) by using the Maple, one gets the following results:

f6xb
=0, =€ [-2=Ink,
Bo B =€ b, n (370)

[—b:8 + 6b; [ — k(A + V)] + 2455 In* k | In” k
b,
2] byAg = 3b; [ — K (A + V)] = 1267 In” k|
o=
b,

(369)

2

b

b

provided xb,b; > 0 and € = 1.
Substituting (370) along with (33) into Eq. (71), one gets the solutions of Eq. (358) in the form:

g(x.1) = € [ (1n )| — 44 glrrort), (371)
by 44" exp, [(x = ct)] + g exp, [~ (x —ct)]
In particular, if we set = 44%in (371), then we have the bright soliton solution of Eq. (358) as:
__|6b, i(—x+or+0;)
q(x, 1) =€ b—(ln k)sech[(x —ct)Ink]e , (372)
2

while, if y = —4A2, one gets the singular soliton solution of Eq. (358) as:

qg(x,H) =€ /—%(ln k) cosech[(x — cr)In k] "+, (373)
2

Case 2. If we choose p = 2,then N = 2. Thus, we deduce that from (31) that Eq. (359) has the same formal solu-
tion (77). Substituting (77) along with Eq. (32) into Eq. (359), collecting all the coefficients of each power of [ R(€)]™

[R'(i)]j, (m2 =0,L2,..8 j= 0,1) and setting each of these coefficients to zero, one gets the following set of
algebraic equations:

b5 — 24by B3 In" k = 0,
~78b5B\B5 In® k + 65,38, =0,
65,3485 + 15b,B1B5 — 643y B3P, In” k — 926, BB, In> k =0,
_46b3X|3?|32 In®k + 20b2[3%l33 - 146b3XB]B§Bo In® k + 301’260313; =0,
156,8/B5 + [B — k(A + V)] P53 + 4o Bs In” k — 8ABox In” k — 85,8 In” k + 156,8B5
—56byB3Ba In” k — 1045 BiBB, In” k + 60b,B,BiBs + 16585 In° k = 0, (374)
506,8,8; In” k — 11A,B,8, In” k — 22b;3B1B, In k + 4[5 — k(h + V)| BB, + 65,8,
—~74b5 BBy In” k + 4orx BB, In” k + 605,35B,8; + 605,3,B,B5 = 0,
—8ABoByx In” k + 406,858, In” k + 56b,B7B5 In k + 6[b, — 1 (A + V)] BIB3 + 906353765
— 165, Bo In” k + 30b,B4B1B; + 4 (B — 1c(A + V)] BoB; — 2065 BiBs In” k — 3A,By In” &
+205,8:8; + byp + afyIn’ k = 0,
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—~6bsx BBy In” k + 265818, In” k +12[b — k(A + V)] BBiB; — 3A,BBox In” k
+60széBfBz +4[b —x(A+V)] Bfﬁz + 6b260315 + 861’3313%[30 In® k + 60bZBgB1B§ =0,
—A +[B = (A + V)] B} + 3263385 In” & + 156,35, + 6 [ — k(A + V)] B3
+4AB5 In” k +12[B — k(A + V)] BoBiB, + 605,33 B, — 4aiB; In” k + 458 In” k
+15b,B3B5 + 56b;B;B,B, In’ k = 0,

—40B,B, In” k + 4[5 — (A + V)] BoBy +12[5 — k(A +V)]BB,B, + 1063B, In” &k
—2A,B,B, +385B,B,80 In” k + SA,B,B, In” k + 306,87B,8, + 206,347 = 0,
—2A,B0B, +6[h — k(A + V)] BSB% + 8b3BzB(3) In® k + 6b2[3(5)[32 - A2'312 - aBlz In’ k
+15b,BaB7 + 8b:B1By In” k + 4 [ — (A + V)]BB, + AB; In’ k + 4AB,B, In° k = 0,
—2A,B0B, + 46 — k(A + V)] BSBI + AoBiBy In’ &k + 2b3BlB(3) In® k + 6b2[38B1 =0,

6
—ABo + (b —w (M + V)]Bg + by, = 0.
On solving the above algebraic Egs. (374) by using the Maple, one gets the following results:

2

4] =byAg + 6By [B — k(A + V)] + 965 In” k |In” k

A, = , 375
2 , (375)
2[ byAg = 3b; [ — K (A + V)] - 485; In & |
o= ,
b,
provided xb,b; > 0 and € = 1.
Substituting (375) along with (33) into Eq. (71), one gets the solutions of Eq. (358) in the form:

g, = 2€ [ (1n )| — 44 g/t (376)

b, 44" expy [2(x — ct)] + yexpi [-2(x — cr)]

In particular, if we set x = 44 in (376), then we have
the bright soliton solution of Eq. (358) as:

g(x,t) = 26\/@(111 k)
b,

x sech[2(x —ct)In k]!t

(377)

while, if x = —4A2, one gets the singular soliton solu-
tion of Eq. (358) as:

g(x,1) = 2e /—%(ln k)
b,

 cosech[2(x - er) In k]! =)

Similarly, we can find many other solutions by choos-
ing other values for p and N .

(378)

15. KUDRYASHOV’S LAW
For the Kudryashov’s law nonlinearity, we have

F) =212 p02 40 (379)

¢2
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where b;(j =1,2,3,4) give self phase modulation
(SPM). Then the nonlinearity index # is the power law
parameter.

Equation (1) corresponding to Kudryashov’s law
nonlinearity (379) is given by:

iq, +iaq,.. + [ﬁ + by +bjlg|" + b4|q|2"Jq
q

|q|2n
o s B fai(uf), - {lf) [+ o
q* 4|q|2q* xx x
+i [qu +Mla"g) +u(a") a+ qulz'"qx}

where Eq. (41) reduces to:

Agdd" — ad'® — A0 + 5" + byo"

2+n 2+2n 2m+2 (381)
+ 007"+ b0 — k(A + V)T =0.

For integrability, one must select n = m. This leads to

the modification of Eq. (1) corresponding to

Kudryashov’s law nonlinearity as:
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. . b, b, m
iq, +iaq, +| —+ W + b3|q| + b4|q|
g al

ot Bl {(W)ﬂ 1 o8)

q*
+ I[qu +Mla"g) +u(lal")  + qulz'"qx]
Consequently, Eq. (381) changes to:

Agdd" — 00" = A07 + 5" + byo” "

2+m _ 24+2m (383)
+ 50" " + [by — k(L + V)] 07" = 0.

Balancing ¢¢" and ¢"**” in Eq. (383), gives the bal-
ance number N = l. Since the balance number is not

m
integer, then we take into consideration the transfor-
mation

0E) = [UE (384)
gassg — [y — k(A +V)] 8

where U (&) is a new positive function of & Substituting
(384) into (383), we have the new equation

mAUU" —[0+ (m —1)A U +m’ {b, + bU

D \ a (385)
— AU +bU’ + b, — k(L +V)U*} = 0.

In the next two subsections, we will solve Eq. (385)
using the following two methods:

15.1. New Mapping Method

According to the new mapping method, we balance

UU" with U" in Eq. (385) yields the balance number
N =1. Now, from (6), the solution of Eq. (385) has
the same formal solution (90). Substituting (90) along
with (7) into Eq. (385), collecting all the coefficients
of FIE[F'E)] (=0,1,..,8 j=0,1) and setting
them to zero, we have the following algebraic equa-
tions:

4 2 4 2
—=Aymdys —=Aysd;, =0,
3 20028 = 380S0

—§A0m5182s + gocs8182 — 4 [b, — k(L + V)] 8,8 - %AOSSISZ -0,

2 2
— ZAmd;’s
3 D0mo

- m’b,5, — 4m’ [b,

lAos812 + l0(5512
3 3

— k(A +V)] 8,3 + 20485 = 0,

—12m [by — k(A +V)]8,8,85 — 4m” [, — k(A + )] 8;8, — 2A9md,8,h — 3m’ ;5,53

+ 20thd,0,

- AOmSOSIS - 2A0h6182 = 0,

_4A pBE — bm? | 5252 +28,5%5, + 1 54}[ — k(L)) - %thsf + %och&z

+ m’A,S
_6m2b3808182 - A0m6182p + 2m2A26182

—3A,md,8,h — EAomafh —3m’b8;8, + 40pds — 3m’b,,85 = 0,

- m2b36?

(386)
— Aymdy0,h + 40pd, 5,
— k(A +V)]8;5,8, =0,

2m° A58, + 4ard; + opd; — 4Agmd,S,p — 2m” | 2838, + 38781 | [y — k(A + V)]

+ 2Am&r — m* B, — 3m’byd,5;

— Agp&; + m* A — 4AyrS; - 3m’ bS5, = 0,

_A0m6061p + 2m2A28081 - 4m2 [b4 - K(}\. + V)] 8381 + 2A0m8182r + 40(1‘8182

-m’b,

—3m’ B39,

—bm” —m” [y — k(A + V)] 8y + Agmrd; — 2A,mByS,r — m’ b,y + ourd;

+m°A, S,

- m’b3, = 0.

With the aid of the solutions (8)—(29), we have the following types of solutions:

3h 16p

Type 1. Substituting s = 67 r=r

the following results:
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,into the algebraic equations (386) and solve them by Maple, one gets
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_ A _1 2 2
5, :30A2(m 1)’ 5 =0, 5, _60 > (m )’ ’ _ _64m Az’ I __96m Az’
116, 116, 114, 114,
2
a=3n, b =22@m=Db oty (387)
2 200(m — 1A,
. 23380 (m” 1) A3 . 12250(m =1’ (2m + 1) 4
! 32676, 108957 ’
provided
by#0, Ay #0, Ay #0. (388)

If we substitute (387) along with (8)—(12) into Eq. (90), then Eq. (382) has the following solutions.
15.1.1. Soliton solutions.

_ -~ L
27 - 55tanh (&m /ﬁA (x— ct)] !
q(x, l) _ 10(m - 1)A2 0 ei(—nx+mt+eo)’ (389)
336, 3+ tanh?| 8em |22 (x —ct)
| 33A, |
and
_ i i
27 — 55coth (SGm A (x— ct)j
q(x, l‘) — 10(1’)’1 - 1)A2 0 el(—Kx+mt+eo), (390)
336, 3+ coth?| 8em, |22 (x —ct)
| 33A, |
provided b;A, (m—1) > 0, AjA, > 0and € = £1.
15.1.2. Periodic solutions.
_ 1
2 Az m
27 4+ 55tan [&sm ’_33A (x— ct)J
q(x, t) — 10(m - 1)A2 0 el(—Kx+(Dt+90)’ (391)
3363 3~ tan?| 8em, |- 22 (x—ct)
| 33A,
and
_ 1
2 A, m
27 +55cot (SGm /_33A (x— ct)j
q(x’ f) _ 10(111 - 1)A2 0 e:(—lcx+u)t+eﬂ)’ (392)
3363 3—cot?| 8em, |~ =22 (x—cr)
| 33A,
provided b;A, (m —1) > 0, AjA, <0 and e = 1.
Type 2. Substituting s = 132 r = 0, into the algebraic Egs. (386) and solve them by Maple, we get the fol-
lowing results:
-1 60A, (m —1 2 2
5, = 0alm=l) 5 5 00 0m=l) o GdmA, o, 96mA, 3,
11b; 11, 11A, 11A, 2 (393)
)2 3900(m” —1 76050(m —1)*(2m +1) A,
om0 oy PO A T60stn— 1 o 1)
200(m — 1)°A, 1215, 1331b;

provided b; # 0,A, # 0,A, # 0.

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS = Vol.66 No.5 2021



532 ELSAYED M. E. ZAYED et al.

If we substitute (393) along with (14) and (15) into Eq. (90), then Eq. (382) has the following solutions.
15.1.3. Dark and singular solitons.

q(x,t) = _10Gm = DA, 5+ 8tanh| 8em |— A,
16, | 114,
q(x,1) = _10Gn = DA, 5+ 8coth| 8em |— A,
16, | 114,

respectively, provided b,A, (m —1) < 0, AjA, < 0 and e = £1.

1

(x - ct)J }m g/ Trortt) (394)

and

-1
(x— ct)j }”’ elreoror) (395)

Type 3. Substituting » = 0, into the algebraic equations (386) and solve them by Maple, we get the following

results:
5, =L |- 33, 520, 5 =2 [ 33, ,
5\ 2m+1)A, 5\ (2m+1)A,
:_3m2A2’ h:6m2A2’ E :%’ w=3a,
2 11A02 114, 11A, 2 (396)
b =22 DR L cdetv), b= Lmana, -
10895, 3 (2m +1)A,
b, = 5(m—1)(2m+1)A§\/_sz’
10895, (2m+1)A,
provided

(2m +1)A,b, <0, by %0, A, #0. (397)

If we substitute (396) along with (16)—(29) into Eq. (90), then Eq. (382) has the following solutions.
15.1.4. Soliton solutions.

18sech’ (em —%(x - ct)]
g(x,1) = 1/ 33b, 1+ 0 . e:(—m+mr+60)’ (398)
5V 2m+1)A, 91d h 3A,
_ +4/1+tanh| em —lle(x—ct) _
- 1
3 18cosech’ [em f—131AA2 (x - ct)j
q(x’ f) — l _ H 1— 0 - e:(—}cx+oot+(-)0)’ (399)
5 2m+1)A, 3A
9+ 41+ coth| em,|-—2(x —ct)
I 11A, |
provided
(2m+1)Ash, <0, AA, <0, €= 1. (400)
15.1.5. Bright soliton.
1
g(x,1) = % _ . 33b12 A 1— 12 ei(—xx+wt+90), (401)
(2m+1)A, Scosh| 2em, |~ 222 (x—ct)|-3
11A,
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and

33b,

6

3 |-

q(x,1) =

provided

11A,

15.1.6. Singular soliton.

3%, |,

6

1
SV (@m+1)A, 5cosh’ (em\/— 34, (x— ct)] -4

q(x,1) =

provided (2m + 1) Ab, < 0, AgA, < 0, € = £1.
15.1.7. Periodic solutions.

114,

1
SV (@m+1)A, 5sinh’ (em\/— 38 (x— ct)j +4

i(—1ex+0r+6,
ol 0

i(—1ex+0r+6,
ol 0

ei(—xx+wt+60)

i(—1x+or+8y)

i(—Kx+07+6,
e ( )

B

i(—1x+wr+6,)

i(—1ex+0r+6,
ol 0

i(—rx+wr+8y)

) L
6sec’ em\/E(x —ct) "
1 5 114,
(2m+1)A, 3+4tan| em,|—2(x —cr)
I 11A, |
1
6cosec’ em\/g(x —ct) !
| 33b, 14,
(2m +1)A, 3+4cot|em |2 (x —ct)
11A, |
6sec’| em 38, (x —cr)
q(x,t) = L33 - =
) 5 (2m + 1)A2 _ 2 & -
5—4sec (Em\/lle (x —ct)
1
6cosec’ em\/E(x —ct) !
gty =11 |33 - =
SV Cm+D)As | s aiosect  em &("‘C’)
11A,
1
12sec 2em\/37A2(x_Ct) "
aCe) = 1 33b, B 11A,
sV @mena,l (-
5 3sec(2€m\/1 1A, (x —ct) ]
1200560(20’” 38, (x = ct)] m
gx.py =11 o33 - =
5V 2m+1)A, 5 —3cosec| 2em 34, (x —ct)
11A,
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(404)

(405)

(406)

(407)

(408)

(409)
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provided Now, we will discuss the following cases:

(2m+1)Ah, <0, AjA; <0, €==l1. (411) Case 1. If we choose p =1, then N = 1. Thus, we
deduce that from (31) that Eq. (385) has the same for-

15.2. Addedum to Kudryashov’s Method mal solution (113). Substituting (113) along with (32)
- into Eq. (385), collecting all the coefficients of each

. . "o 4 .
According to this method, we balance UU " with U power of [ R(é)]ml [ R'(ﬁ)]j, ( mo=0,1,2,..,4, j=0, 1)

in Eq. (385), one gets the relation:
2N +2p=4N = N = p. (412) the following set of algebraic equations:

—[by = k(A +V)]m’B} + B} (In” k) Agx, — BF (In” k) g, + B (In” &) Agrmy, = 0,
—4[b, — k(L + V)| mBoB + 2B, (In” k) mByy — m*b] = 0,
B (In* k) Ag + m* A} — 3mbBB} +B; (In” k) o — 6[b, — k(A +v)]m’BiB} =0,
2m*ABB, — 3mbBiB, — m’b, — 4[b, — k< (h+ V)| m’BiB, — A, (In’ k) mB, = 0,
—m’bBy — m’ BBy — m’b, + m* APy — m’ [b, — k(A +V)]Bg = 0.

On solving the above algebraic Egs. (413) by using the Maple, one gets the following results:
g, = Ink 2@m=DAX g _Ink 2(2m=1)Ag
T am\b —x(A+v) T 2m\ b —k(h+v)
3 (3x—2)A,In’ k (m+ D — DA I’ k 2(2m—1)Agy,
o= _Ao, Az = 3 , bl = — 3
2 4m 8m by — k(L +V)

p o G =D —AiIn'k _ m=D[b—x(A+V)]ink 2(2m—1)Ax
’ 64m*[b, —x(A+V)] m(2m —1) Vb — k(h+v)

provided (2m — 1) Agx [b; — k(A + V)] > 0.
Substituting (414) along with (33) into Eq. (113), one gets the solutions of Eq. (382) in the form:

1
CI(X, f) = M\/m 1+ > 84 mei(—KermHBO)’
dm \by —x(A+V)| 44" exp,[(x —ct)] + xexp [~ (x — ct)]

provided [5; — k(A + V)] xA, < 0.

In particular, if we set x = 44 in (415), then we have the bright soliton solution of Eq. (382) as:

1

Ink 2(2m_1)A0 M f(—koc+ar+6,)

’[ =<— A h —ct 1 k )
q(x,1) {2’" ’b4—K(7\,+V)[ +sech[(x —cf)In ]]} e

while, if we set y = —44% in (415), then we have the singular soliton solution of Eq. (382) as:

1
q(x,1) = {% —%M + cosech[(x —cf)In k]]}m g/t

and setting each of these coefficients to zero, one gets

(413)

(414)

(415)

(416)

(417)

Case 2. If we choose p = 2,then N = 2. Thus, we deduce that from (31) that Eq. (131) has the same formal solu-
tion (119). Substituting (119) along with Eq. (32) into Eq. (385), collecting all the coefficients of each power of [ R(€)]™

[R©)], (my =0,1,2,...,8, j = 0,1) and setting each of these coefficients to zero, one gets the following set of

algebraic equations:
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4(In” k) AgxB3 — 4(In’ k) o3 — [by — k(A + V)] m’B; + 4(In k) AgmP3x = 0,
4(1n” k) AgxBiB, + 7AB, (In” k) mP,x — 4[by — k(A + V)| m’BB; — 4(In” k) ax BB, = O,
—4[by — (A + )] m*ByB; — B7 (In® k) oty + B7 (In k) Agx — m?bs5 + 267 (In” k) Agmy,

+ 8(In’ k) AgmBoBox — 6[by — k(A + )] m’BiB; = 0,
—12[by — k(A + V)] m*BBiB; — 3m’bB,B; + 3AB, (In” k) mByy, — 4[by — k(A +v)]m’BiB, =0,
—12[b, = k(A + V)| mBBiB, — 4(In k) A3 — 3m’ BB, + m A3 - [b, — k(A + V)| m’B!
= 3m’bPB; + 4(In” k) aB; — 6[b, — k(A + V)] m’BiB; = 0, (418)
—4AdB; (In k) B, +2m°ABB, — Aoy (In” k) mB, —12[b, — (A + V)] m’BBiB,
— 6m’b BB, — m’bB} —4[by — k(A + V)] m’BB] +4(In’ k)P, =0,

—6[b, — k(A + V)| mBiB; + 2m°ABB, + m’ AP — B} (In” k) Ay — m’BB, — 3m’bBB;

—4(In’ k) AgmByB, — 4[b, — k(A +v)]m’BiB, +B; (In” k) o — 3m’bBB, = 0,

2m* A BB, — 3mbBiB, — m’b, — 4[by — k(A +V)]m’ BB, — A, (In” k) mB, = 0,
m’ APy — m’bBy — m’by, —m’ [by — x (A +V)]|B; — m’ BBy = 0

On solving the above algebraic Egs. (418) by using the Maple, one gets the following results:

_Ink 22m-1) AOX 8 Ink [2(2m—1)Ayy A (3x —2)A,In’ k
Po 2m \}b4—1< htv) T m \b, —x(A+Vv) B 4 = m’ ’
_(m+ D —2A,In’ k [2(2m—1)Agx b, = _@m’ —1)(x 4y A; In’ k (419)
n \/b —Kk(h+v) 4m' (b, — k(L +Vv)]
. __2(m—1)[b4—K(k+v)]lnk\/m
S m2m — 1) by — k(L +V)

provided (2m — 1) Agx [b; — k(A + V)] > 0.
Substituting (419) along with (33) into Eq. (113), one gets the solutions of Eq. (382) in the form:

1
dOt) = Ink 2(2m —1)Agy I+ — 8A m ei(—Kx+wt+90), (420)
2m \ b, —x(A+V) 4A4° exp, [2(x — ct)] + xexp, [-2(x —ct)]

provided [b;, — k(A + V)] xA, < 0.

In particular, if we set = 44% in (420), then we have the bright soliton solution of Eq. (382) as:

I
Ink 2 (2m ) A0 _ m i(—rx+r+8)) 0]
q(x,t) = { - ’—b4 TR+ v)[A +sech[2(x —ct)In k]]} e , (421)

while, if we set = —44% in (420), then we have the singular soliton solution of Eq. (382) as:

1
Ink ( )Ao _ " i(~xx+or+8y) 422
q(x,1) = { " - —b V) [A4 + cosech[2(x —ct)In k]]} e : (422)

Similarly, we can find many other solutions by choosing other values for p and N.
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16. GENERALIZED KUDRYASHOV’S LAW
For the generalized Kudryashov’s law nonlinearity, we have

b1
F(¢) = o

¢2 q) ¢2
where b,(j =1,2,...,
eter.

+ 2 bz thyh b4 + b5q>2 + b + b0 + b,

3n

(423)

8) give self phase modulation (SPM). Then the nonlinearity index # is the power law param-

Equation (1) corresponding to generalized Kudryashov’s law nonlinearity (423) is given by:

ig, + iag,.. + [| IF‘" * ”|2 - |3 0 | + gl + ba" + Bla[" + b8|q|4"jq
2 1 (424)
= 0‘% + —4|q[|52q* [2|q|2(|q|2)xx _ {(|q|2)x} } +7q + i{qu + x(|q|2mq)x + H(|f]|2m)xq + V|q|2qu}
where Eq. (41) reduces to:
AO(M)" _ aq)nZ _ A2¢2 + bl¢274n + bz(p2—3n + b3q)2—2n + b4¢27n + b5¢2+n + b6¢2+2n (425)

+ b7¢2+3n + b8¢2+4n _ K()\, +V)¢2m+2 — 0
For integrability, one must select » = m. This leads to the modification of Eq. (1) corresponding to generalized

Kudryashov’s law nonlinearity as:

iq, +iaq.., +( b b b by s

+bdal" + bl + bla" + bila] J

" w6
2
= oy —4| : A2 a), ~{(af) |+ va-+i B0+ M)+ (™) g+ viaP"a, |
Consequently, Eq. (425) changes to: b b , )
" 2 2 2-4m i, +1aq e + (ﬁn + =5+ bl + byl qu
Agd0" — 00 ~ A0” + b0 g™ ldl
+b 2-3m +b 2-2m +b 2—m +b 2+m 427 x2 5
$ by Trag A T @D gl B [ o) ~{(4) } } tyg (431)
+ [ — k(A + V)] 67" + 50" + b = 0. a*  4qq* x
Balancing ¢¢" and ¢°**” in Eq. (427), gives the balance +i {qu + 7L(|‘1| q)x + u(|q|2m)xq + V|‘1|2qu}'
number N = Lm Since the balance number is not inte-  Consequently, Eq. (429) changes to
ger, then we take into consideration the transformation " 2
2mAUU" -0+ (2m —1) Ay |U
1
0©) = [U®n, (428) +4m’ (b +bU — AU’ (432)

where U () is a new positive function of & Substitut-
ing (428) into (427), we have the new equation

2mALUU" = [0+ (2m —1) A, |U"?
+ 4m*{b + bU — AU

+ [bs — k(M +V)]U® + U} (429)

1 3 3 A
+ 4m’bU? + 4m’b,U? + 4m’°bU* + 4m’b,U? = 0.
For integrability, one must select
b2 = O, b4 = O, bs = 0, b7 = 0 (430)

This leads to the modification of Eq. (1) correspond-
ing to generalized Kudryashov’s law nonlinearity as:
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+[bs — k(M +V)]U’ + bU*} = 0.

In the next two subsections, we will solve Eq. (432)
using the following two methods.

16.1. New Mapping Method

According to the new mapping method, we balance

UU with U* in Eq. (432) yields the balance number
N =1. Now, from (6), the solution of Eq. (432) has
the same formal solution (90). Substituting (90) along
with (7) into Eq. (432), collecting all the coefficients

of F’(&)[F'(&)]j (l =0,1,..,8, j = 0,1) and setting them
to zero, we have the following algebraic equations:
Vol. 66
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537
§A0s6§ - §as5§ + 4bym’ S5 + gAOmsﬁg =0,
§AOS6182 - §(XS6182 + 16b8m2618; + %Aomsslsz = O,
%Aomﬁ(@zs —20h8? — %asaf +2AS + %Aosﬁf + 24bm 8252 + ngmsaf
+ 2A,mhd; + 4[by — k(A + V)| m’S, + 16bm’8,8; = 0,
12[b — k(A + V)| m°8,; + 48byn’5,8,8; — 208,85, + 4A,;mhd,S,
+ 2A,;m,S,s + 16bym° 8,5, + 2A,hd,8, = 0,
400p8] + Agmhd] — 4A,m’8] + 6AmBoS,h +12[bs — k(A + V)| m’ | 878, + 8, |
+24bm528: — %och&lz T 48hym’ 8,578, + 4y’ + L AnSE — dopd? = 0,
4[bs — k(A + V)] m’8] — 8A,m* 8,8, + 2A,mB,S,h + 2Aympd,5, — 40,pd,5, (433)

+ 24 (b — k(A + V)| m*8,8,8, + 48bym’5:8,8, + 4A,pd,5, + 16bm’5,5, = 0,
4AGr8) + 8AgmSS,p — 8A,m 8y, + 12[bs — k(A + V)| m’8,5; + 24bym’ 88,
— 0p8; +16b;m°8,8, — 40urS; + Agpd; — 4A,m’S; — 4AAmrS;
+12[bs — k(A + V)| m’ 838, + 4bym’S, = 0,
—8A,m’ 80, + 16bym’ 8,3, + 4bym’d, +12[b — k(A + V)| m* 835, — 40urd,3,
+ 4Ar,0, — 4Aymrd,6, + 2A,mdyd,p = 0,
—4A,m*8; + dbym’Sy + Agrd; + 4[bg — k(A + V)] m’S, + 4AgmE S,
—2A,mrd; + 4bm” + 4bym’Sy — ard; = 0.
With the aid of the solutions (8)—(29), we have the following types of solutions:

2 2
Type 1. Substituting s = 2, y = 102

16" = 27 into the algebraic Egs. (433) and solve them by Maple, one gets the
following results:
__30@m-DA, 5 _ _ 60(2m — DA, __256m’A,
b -k +V)] T 1 — k(A +v)] 114,
2 12250 (16m” —12m* +1) A,
po 384y _3A = ( 2) 2, (434)
11A, 2 1089[55 — k(A + V)]

by

_23380(dm’ —1)A; 11 (4m—1)[b — k(A + V)]
3267[b — k(A +V)] 20002m — 1)*A,
provided A, # 0,5 — k(A +V) # 0 and A, # 0.

If we substitute (434) along with (8)—(12) into Eq. (90), then Eq. (431) has the following solutions.
16.1.1. Soliton solutions.

1
A 2m
64 tanh’| 16em,|~22— (x — ct
gx.p) = 1-—22@m=DA; | _ ( - 33A°(x C)j
’ 116 — k(A + V)]

i(—xx+wr+8;)

e , (435)
27 + 3tanh’ | 16em |22 (x —ct)
334,
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and

302m — 1A,
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2 Az _
64 coth (16em /33A0 (x ct)j

90 = i, — k(4 V)]

0

2 A2 _
27 + 3coth (16em\/33A (x ct)}

provided (2m —1)[5, — k(A + V)] A, > 0,A,A, > 0 and € = 1.

16.1.2. Periodic solutions.

- 2 =2 -
27 —3tan [l6em\/ 33A0(x ct)j

2 B ]
64 cot [16em 33A0(x ct)j

_)_30@m-DA, |,
90x1) N[k —x(h+v)]|
and
_)_30em-na, |
a0 1) 1[5 — k(A + V)] ’

A,

2
27 = 3cot [l6em\/—33A0 (x— ct)j

provided (2m —1)[bs — k(A + V)] A, > 0,A)A, <0 and € = £1.

2
Type 2. Substituting s = 3h

16p

lowing results:

_ 302m —1)A,
11[8 — k(A + V)]

0

b

384m’A,
1A,

~ 3900 (4m” —1) A3

h: _—, a:éAo, bl:

2

60(2m — 1)A,
8 =0, & = :
: 211 — k(L +V)]

76050 (16m° —12m* +1) A,

2m

ei(—Kx+(Dt+90)’ (436)

m
ei(—xx+mt+90), (437)

2m
i(—roc+mr+90)’ (438)

=% r =0, into the algebraic Egs. (433) and solve them by Maple, we get the fol-

__256m’A,

b

114,

3

21k -x(A+V)]

13315 — k(A + V)]

(439)

, _ L1(dm=1)[b, — k(A + V)

2002m —1)°A,

provided A, # 0,5, #0, A, # 0 and e = 1.
If we substitute (439) along with (14) and (15) into Eq. (90), then Eq. (431) has the following solutions.

16.1.3. Dark and singular solitons.

30Q2m — DA,

q(xa t) = {_

and

30Q2m — DA,

S5+ 8tanh| 16em |— A,
33[bs — k(A + V)] 114,

e
A 2m i(—1x+mr+6,)
) ={— 5+ 8coth| 16em |——2(x — ct ,
aeeD {33[b6—1<(7»+v)]{ 0 ( N ia, C)H} ‘

respectively, provided (4m —1)[b, — k(A +V)]A, <0, Aj)A, <0 and e = £1.
Type 3. Substituting » = 0, into the algebraic Egs. (433) and solve them by Maple, we get the following results:

Qm - DA,
33[b — k(A + V)]’

60:_
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_22m-DA,
33[b — k(A + V)]’

8, =0, 9, =

1
(X _ Ct)jj|}2m ei(—K‘x+(Dt+eo)

b

(440)

(441)

__lam’A,
11A,

b
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2 2 25(16m° —12m* +1)A;
h:24mA2’ S:16mA2’ OczéAo, b =— ( )22, (442)
11A, 11A, 2 35937[bs — k(A + V)]
2 2 2
, 5(4m” —1) A3 66(4m —1)[b — k(L + V)]
3 s — = ’

99[b — k(A + V)]’ Qm — 1A,
provided Ay # 0,5, — k(A +Vv) # 0 and A, # 0.
If we substitute (442) along with (16)—(29) into Eq. (90), then Eq. (431) has the following solutions.

16.1.4. Soliton solutions.

18sech’ (em “T1a, (x— ct)j

q(x’ t) —J_ (2m - 1) A2 ] + : ei(—lcx+u)t+90)’ (443)
33[bs — k(A +V)] 12A
9+4|1+tanh| em, |-—2(x —ct)
11A,
and
1
2m
18cosech’| em ’_12A2 (x —ct)
g =-—2m=DA | 4 g/ art (444)
’ 33[b — k(A +V)] 12A ’ ’
9+4 1+ coth| em |-—2(x —ct)
11A,
provided (2m —1)[5; — k(A + V)]A, <0, AjA, <Oand e = *1.
16.1.5. Bright soliton.
m
e (me _ 1sz2 1+ 12 glrrorenl (445)
[6s =1 (A +V)] 3—5cosh| 2em —12A2(x—ct)
114,
and
1
2m
a061) == (bz’” — I;AZ 1+ 18 g/rrort), (446)
[bs = x(A+V)] 4 —5cosh’| em —12A2(x—ct)
117,
provided (2m —1)[b, — k(A + V)]A, <0, AjA, < 0 and e = 1.
16.1.6. Singular soliton.
1
2m
g(x,1) = (2m - 1) A2 1+ 18 ei(—K‘x+wt+9(,) (447)

33[5 — k(A + V)]

. 124, ’
4 + 5sinh (em\/ 1A, x ct)]
provided (2m — 1)[; — k(A + V)] A, < 0, AgA, < 0 and € = +1.
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16.1.7. Periodic solutions.

1V A 6sec’ (em fﬁiz (x - ct)j "
q(x’ t) _ _33 (b m — ;\‘ ) 1+ 0 ei(—m+mr+eo)’ (448)
(b6 = (A +V)] 3+4tan|em 12A2(x—ct)
T1A, |
_ -
2m
1\ A 6cosec’ [em }ﬁiz (x - ct)j
ann =153 5, . ; 2|1+ 0 ) (449)
[bs =1 (A +V)] 3+4cot| em 12A2(x—ct)
T1A, |
6sec’ (em 124, (x - ct)j "
] (em-1a, B 114, (o6,
q(x,1) = 30 X e ; (450)
[bs = (A +V)] 5—4sec’| em 12A2(x—ct)
117,
1
6cosec’ (em 124, (x - ct)j "
_ (2m - 1) Az 1 le i(—Kx+or+8;)
1D = 3 b — (0 B 124 ¢ ’ @b
[bs —w(A+v)] 5—4cosec’| em 2(x —ct)
114,
12A m
12sec| 2em 2 x—ctj
_ (2m-1)A, B ( 11A, ( ) i(—1ox+or+6y)
q(x,1) = 30 X e ; (452)
[bs = (A +V)] 5—3sec| 2em 12A2(x—cz‘)
117,
12cosec (2em /1 24 (x - ct)} ’
q(x t) _J_ (2m - ]) Az _ IIAO i(—Kx+0r+6)) (453)
33[bg = k(A +V)] 5 — 3cosec| 2em, 1282 (x —ct)
114,
provided (2m—1)[b; —x(A+V)]A, <0, AA, >0
and € = +1. BY (In” k) oty — 2487 (In” k) my,
+ 4m’bB} — B} (In” k) Ay = 0,
16.2. Addendum to Kudryashov’s Method
endum to Kudryashov’s Metho _anp, (ln2 k)mBoX +16m°b BB
_ According to this method, we balance UU with U* + 4m? (b — k(A + v)] [313 =0,
in Eq. (432), one gets the relation: 5 s
454 24m b3 By — 4m AP,
IN+2p=4N = N =p. (454) + 12> [, — k(A + V)] B (455)

Now, we will discuss the following cases:

Case 1. If we choose p =1, then N = 1. Thus, we
deduce that from (31) that Eq. (432) has the same for-
mal solution (113). Substituting (113) along with (32)
into Eq. (432), collecting all the coefficients of each

power of [R(&)]" [R'(ﬁ)]j, (m =0,1,2,...,4, j =0,1)
and setting each of these coefficients to zero, one gets
the following set of algebraic equations:
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— B; (In* k) oo+ B (In* k) Ay = 0,

208, (In” k) mP, + 16m’bBB, — 8m’ APy,
+ 4m’byB, + 12m° [y — (A + V)] BB, = 0,

4m’ [bg — k(A + V)] By + 4m’byB;

+ Am’ b, — 4m’ APy + 4m’b, = 0.
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On solving the above algebraic Eqs. (455) by using the Maple, one gets the following results:

B, = — (2m—1)xA, In’ k B = - (2m —1) Ay In” k
Csw bk T de [ - k()]
2 N )
a=3A,, A2=(3X_2)A§1“ Kb =—Lamt -4, (2"31—1)on111 k|
2 16m 2 32m’ [b — k(L + V)]

_ @M’ =D (x-2)xAiIn" k y  2dm— Dm’[bg — k(A + V)]’
’ 64m’ [B, — (A + V)] " (2m — 1)’ A, In* k
provided YA, # 0 and b, — k(A + V) # 0.

Substituting (456) along with (33) into Eq. (113), one gets the solutions of Eq. (431) in the form:

— 2 o
glx,1) = {— (2’211 DA, In" & 1+— 84 e’(_KXMH%),
8m” [y — k(A +V)]| 44" exp,[(x —ct)] + yexp [-(x = cr)]
provided [b; — k(A + V)] xA, < 0.

In particular, if we set y = 44% in (457), then we have the bright soliton solution of Eq. (431) as:

- ’ i
g(x,1) = 1— (21:1 1) AA, In” k [ +sech[(x = cr)Ink]]L " loorsen
8m” [bg — k(A + V)]

while, if we set = —44% in (457), then we have the singular soliton solution of Eq. (431) as:

? m
q(x,1) = (221 —1) A8 In"k [A + cosech[(x — ct)Ink]] ’ oo,
8m” [, — k(A + V)]

541

(456)

(457)

(458)

(459)

Case 2. If we choose p = 2,then N = 2. Thus, we deduce that from (31) that Eq. (432) has the same formal solu-
tion (119). Substituting (119) along with Eq. (32) into Eq. (432), collecting all the coefficients of each power of [ R(€)]™
[R'(Z:,)]j, (m2 =0,L2,..,8, j=0, 1) and setting each of these coefficients to zero, one gets the following set of

algebraic equations:

4m’byB; + 4(In” k) ouxB; — 8A, (In” k) mB3y, — 4 (In” k) Agx3 = 0,
16m’bB,B; + 4 (In” k) a BB, — 4(In’ k) Agx BB, — 144, (In” k) mB,Bx = 0,
7 (I k) Agx — 4A.B; (In” k) my + 16m°bB B3 + 24m’b B3
+ 4m’ [bs — (A + V)]B3 — 16, (In” k) mByB,x + B; (In” k) oy, = 0,
—6AB, (In” k) mPyx, +12m” [bs — k(A +V)]BB; + 16m’b BB, + 48m’bBBB3 = 0,
12m” [b = < (A + V)IBIB, + 4(In” k) A3 + 4m’ b} — 4 (In” k) ol
+12m” [bs — k(A + V)| Bof> + 24m°bBefs — 4m’ A5 + 48m BB, = 0,

20 (In* k) BB, — 8mABB, + 16m b BB} + 4m’ [ — (X + V)] [ 6B, + B |
+4(In” k) ABB, —4(In’ k) o B, + 48m’°BBiB,B, = 0,

Br (In” k) Ay — 8m*ABoB, —B; (In” k) o+ 4m’bi, + 16m’b BB, — 4m’A,B]
+24m’bBB; + 12m” [bg — (A + V)| BB} +12m” [by — k(A + V)]BiB, + 8A, (In” k) mByB, = 0,
+2A,, (In” k) mBy + 16m° BB, — 8m A, + 4m’bs, +12m” [by — k(L + V)] BB, =0,
—4m’ ARy + 4m’ [by — k(A + V)| By + 4m’ by + 4m’byB, + 4m’b, = 0.
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On solving the above algebraic Egs. (460) by using the Maple, one gets the following results:

(2m — 1) A, In’ k

(2m — 1) A, In” k

B =— , B =0, B =— ,
b - k(A +V)] P b - k(A + V)]
2 3, T
oa=3n, A, =CAZ2AINTK L4y (T DAA K (461)
2 4m 2 4m’ [by — k(A + V)]
_ @M —D(x-2)xAiIn*k = Dm’[bs — k(A + V)]’
’ 4m’* [bs — k(L +V)] 2(2m — 1)’ A, In* k
provided xA, # 0 and b; # 0.
Substituting (461) along with (33) into Eq. (113), one gets the solutions of Eq. (431) in the form:
_ 2 m
g(x,f) = {— (2’;’1 I)XAO In” k . 84 1(—Kx+mt+eu)’ (462)
2m” (b — k(A +V)]| 44 exp, [2(x — )] + xexp, [-2(x = ct)]
provided [b; — k(A + V)] xA, < 0.
In particular, if we set = 44% in (462), then we have the bright soliton solution of Eq. (431) as:
1
2(2m —1) AA, In’ o
g(x,1) = 1— (2’” ) A%, In” k [A+sech[2(x —ct)Ink]]} &%) (463)
m”[by — k(A + V)]
while, if we set = —44% in (462), then we have the singular soliton solution of Eq. (431) as:
_ 2 m
q(x,1) = 2(3}" 1) ALy In” k [A+ cosech[2(x —cr)Ink]]} &™), (464)
m” [by — k(A + V)]

Similarly, we can find many other solutions by choosing other values for p and N.

17. CONCLUSIONS

This paper contains innovative results on PC soli-
tons that stem from CGLE studied with a dozen forms
of nonlinear refractive index. Such forms of SPM led
to the emergence of bright, dark and singular optical
solitons. These solitons are thus a true asset in physics
and telecommunications engineering. They lead to
several follow—up studies that can be conducted
immediately. One immediate area to expand is the
retrieval of conservation laws. These conservation laws
for the twelve forms of SPM with PC solitons will
surely be a gateway to enhance the study of such soli-
tons with CGLE. These con laws would enable the
study of soliton perturbation theory, collision induced
timing jitter and stochastic perturbation with the
retrieval of mean free velocity of thesolitons by formu-
lating the corresponding Langevin equations. Later,
additional schemes would yield the dynamics of tem-
poral evolution of soliton parameters. These are varia-
tional principle, collective variables and moment
method. Other features that must be addressed are
from quasi—stationary solitons, optical couplers, mag-
neto—optic waveguides, dispersive solitons and many
others [32—40]. Another avenue to venture would be
to consider differential group delay followed by the

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS

extension to DWDM topology and dispersion—flat-
tened fibers. One more issue is to study the PC soli-
tons with CGLE as the governing model in the context
of Bragg gratings, in case of low CD, with these dozen
forms of SPM. Such studies are all under way and they
would be gradually and surely reported with time. The
inquisitive readers are suggested to just hang in there!
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