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Abstract—This paper revisits the study of optical solitons that is governed by one of the three forms of
derivative nonlinear Schrodinger’s equation that is also known as Chen—Lee—Liu model. This model
is investigated by the aid of fully shifted Jacobi’s collocation method with two independent
approaches. The first is discretization of the spatial variable, while the other is discretization of the
temporal variable. It is concluded that the method of the current paper is far more efficient and reliable
for the considered model. Numerical results illustrate the performance efficiency of the algorithm.
The results also point out that the scheme can lead to spectral accuracy of the studied model.
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1. INTRODUCTION

The theory of optical solitons [1—5] is mainly governed by the well-known nonlinear Schrodinger’s
equation (NLSE) [6—9]. However, there exists a wide variety of its manifestations and modifications that
also govern pulse transfer across the globe through optical fibers, PCF, metamaterials and couplers. A few
such models are Schrodinger—Hirota equation [10], Manakov equation, complex Ginzburg—Landau
equation, Fokas—Lennels equation, Gabitov—Turitsyn equation and many others. These models are con-
sidered under different circumstances such as dispersive solitons, differential group delay, DM solitons
and many others. Besides these familiar models, there is another class of versions of NLSE that is referred
to as derivative NLSE (DNLSE) [11—13] that appears in three forms. One such form is the Chen—Lee—
Liu equation [14—21] that incorporates higher order perturbations from optics and is going to be the focus
of today’s paper. While a plethora of pre-existing work has been already reported in regards to this model,
today’s focus is going to be handling the model by the aid of fully shifted Jacobi’s collocation method.

Several numerical methods, including local and global methods, have been listed as approximate tech-
niques for treating the differential equations. The local methods listed the approximate solution at specific
points, while the global methods give the approximate solution in whole the mentioned interval. The
numerical approximations for differential equations [22—26] are listed at specific points using finite dif-
ference methods. While the finite element methods subdivides the whole interval into sub-intervals and
give the approximate solution in they. The finite element methods are used for various types of differential
equation, see, for example, [27—30].
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Recently, there are more interest of appointing the spectral methods to treat with various kinds of dif-
ferential and integral equations [31—33], due to their applicability to bounded and unbounded domains
[34—37]. The convergence speed is one of the major advantages of spectral method. Spectral methods
have exponential convergence rates as will as a high accuracy level. The spectral method has been classi-
fied to four classes, collocation [39], tau [40], Galerkin [41] and Petrov—Galerkin [42] method.

Shifted Jacobi collocation scheme is used to numerically solve the Chen—Lee—Liu equation [43—47]
with initial-boundary and initial-non-local conditions. The solution %(x,7) is firstly placed in its real
U(x,7) and imaginary V'(x, t) parts. Accordingly, the real U(x, r) and imaginary V'(x, ) parts of such equa-
tion is approximated as U y 4 (x,7) and V"  (x,7), respectively, which can be expressed as a finite expan-
sion of shifted Jacobi polynomials for spatial variable. Subsequently, the Chen—Lee—Liu equation with
boundary or non-local conditions is reduced to temporal differential system with initial conditions. Then,
the Shifted Jacobi—Gauss—Radau collocation is assigned for temporal discretization, which is more reli-
able for treating with such problems. Substituting these discretizations in the mentioned equation gets a
nonlinear system of algebraic equations which solved numerically using Newton—Raphson approach.

The mentioned scheme is implemented for the Chen—Lee—Liu equation with initial-boundary and
initial-non-local conditions in Section 2. The competence of our numerical approach is exhibited by
diverse examples in Section 3. Few remarks are mentioned in the last section.

2. CHEN—-LEE-LIU EQUATION

Here, we treat with the Chen—Lee—Liu equation with initial-boundary and initial-non-local condi-
tions.

2.1. Initial-Boundary Conditions
We consider the Chen—Lee—Liu equation

0%(x,1) | 9°%(x,1)
] +
ot ox’

0, (x,1)€e[0,£]x][0,T], (2.1)

+ iy |00 —agfgi" n_

with

%(Oa t) = Xl(t)’ 2{(&8’ t) = XZ(t)a te [Oa T]’ (2 2)
Z(x,0) =& (x), xe[0,4] '
Letting the complex functions (%(x, ), x,(?), Y,(?), and §;(x)) to be in their real and imaginary parts as:
gz(-xat) = m(x’t)+ioV(xat)7 Xl(t) = n](t)+in3(t)a
X2(D) =Mo(1) + My (1), Gy(1) = @1(x) +iPy(x),

wheresoever U(x, 1), V(x,1), f(x,1), g(x,1), N,(®), N5(), N,(7), Ny (@), ¢,(x) and @,(x), are real functions,
thereafter

(2.3)

2
U(x,7) N 0 °V()26, 1) ) + v, t))aalL(x, N _ 0,
ot ox 0x (2.4)
V(x,0) U , . o 2 V(D) _ '
o o + YU (x, 1) + v (x,1)) . 0,

with the next conditions

WO, 1) =my(®), WL, =), 1el0,T]
VO, =n30), V() =n,0), 1e€l[0,T] (2.5)
U(x,0) = fi(x),  V(x,0)=fo(x), xel[0,¥]
The distributed of shifted Jacobi—Gauss—Lobatto quadrature points in [0, ] is the major merit of utiliz-

ing them. Here, we list the basic step of implementing shifted Jacobi—Gauss—Lobatto collocation method
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for transforming the nonlinear system (2.4), (2.5) to temporal differential system with initial conditions.
W(x, ) and V'(x, ) are approximated as

N N
Uy(x,0) =Y eOPLP (), V(x,t) =D e, O0PFP (), (2.6)
Jj=0 j=0

the orthogonal property and discrete inner product [6] permit the following

(Ot,B) ((xB) (o, Br)
e;(t) = e B)ZP( Xy i B U 1),
i=

2.7)
e,(1) = (al — ZP @GV .
In that case, Eq. (2.6) take the form
N [N
1 1-P1 1:P1 1:P1 15P1 1
Ou(x5 t) = 2 [Z h(a' B 9)((1 b (Q?JVBI))Q)(G B)( )méfa,\f\[?,l ]O}’l'(xfgf‘«ﬁt s t)a
(2.8)

N N
1 < )¢ (01BN (0,8) (on,By (ouBy)
V(x,1) = Z(Z e G CPHP P omd) ]V(Xgé’f‘ﬁ} 1),

Over and above that, the partial derivative of first order in space evaluated at shifted Jacobi—Gauss—Lob-
atto collocation as

AU, 1
Thrwlia) _ anm(x&*x?z,z),

ox
" 2.9)

IV < e

= =3 P VS, n=0,1,..,N,

X i=0

where
(0u,By) (oc, BI)
Oy N 50 B) (@ B 9Py (%)

Pi = P (xg ir ) (2.10)

z h(Otl 1) ax x:xégl&pl)

Comparable procedure can be performed to the partial derivative of order two for space variable to get

2%, ((11[31),
T Wrsind) Zx,,,m(xf;ﬁy,t),

ox’
Q.11
CRACTAHD) 27* VS, n=01..,N
ax n,i ist) L) D)
where
N ( 15B1) (o,B)
Z ;N (Ot] B])( (o, Bl)) a @)a (X) (212)
:0 ax2 x:xffm‘\,’ﬁl)

Combining the boundary conditions with the above-mentioned equations and equalizing the residual of
(2.1) by zero give us

N= N-1
U (1) = =DM (0) = Ny M) = D N V(1) = YAULQ) + V5(0)) (pn,onl(r) + P M@ + p,,,,»ou,(r)},
i=1 i=1
N-1 N-1
V(1) = Xy @) + My M) + D 0, (1) = YU + o‘/i(f))[Pn,om(f) + P M3 (1) + an,,-%(nj, (2.13)
i=1 i=l1

n=12...,N-1
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with initial values
W, 0) = [EEE), V0= AEEED, n=1. N-1,
where
W, (1) = U, 1), Vo) = VS0, k=1,...,N -1,

The numerical approach of the such system will listed in Subsection 2.3.

2.2. Non-Local Condition
The nonlocal conditions will treat in this subsection. Let us consider
a?f,(x t) 9°%(x, 1)
ot x>

with the initial, boundary and non-local conditions

=0, (x,7)€e[0,£]x][0,T],

gz(O’t) = Xl(t)5 j%(xyt)dx = X,Z(t)’ 0< l1 < l2 < $5 te [O’T]’

%*(x,0) = d(x), xel[0,Z]

Using comparable analysis in Subsection 2.1, we get

OU(x,7)  9°V(x,1) OU(x, 1)
TR B Y (x, 1)+ V(x, N====0,
2
oV (x,t) 9 Ou(;c, 1) + y(u2 (x.0) + v3(x, t))aolf(x, H_ 0,
ot ox ox

with the initial, boundary and non-local conditions

WO.1) =M, (0), j U, Ndx =M(), 0Sy <L <L e[0T

V(0,7) = N3(1), j‘V(x Ndx =ny(t), 0<y <L <% tel0,T]

U(x,0) = fi(x), V(x,0)= fi(x), xe][0,Z]

The integral conditions in (2.18) are treated as

L N N
| Z[ w PGP ?'&?B)@é@‘};ﬁ"(x)méz?ﬁﬁ?]%(r)dx =m0, 0<Sy<uL<E,
Jj= 0

Yy =0

which equivalent

N N L
Z[Z L P xéz’fx?,if{j ‘“‘“kx)dx]@%??}%-(r)=n2(r>, 0<a<a<L,

g ey h((ll B

Yy

or briefly

.
D LA@W =0, 0<y <, <,

i=0
where

N Y
Zh(“‘ i 95 >(I Q’E‘z*ff%x)dx]mé%:&’,
Yy

=0
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similarly, we get

N

D Ivty=n0. 0<Sy<u <P, (2.22)
i=0
so, yields

N-1 N-1

WUy (1) = %Enz(f) — LW (1) — z [ioui(t)\) = %(nz(f) = Ini(0) — Z [ioui(t)]7
N = N =

(2.23)

N-1 N-1
V() = Ii(m(t) ~ LV =Y L-%(r)] = Ii(m(t) — I =Y 1,~°V,-(t)]-
N i=1 N i

Based on the information included in this subsection and the recent one, we obtain the following compact
form

N-1 N—=1
U (0) = =D MV 10) = N3 (0) — [m(t) Igns() - me <t)}
i=l

K
—v(@%(r)#ﬁ(r))[pn,ml Py [nz(t) Igny(r) - Zl%(r)}}jpnﬁu (r)j

N-1 N-1 (2.24)
V(1) = an,ou () + Ly oi(1) + [m(r) Ioni(0) - 21 au, (r)J
— YU (D) + V5(0)) (pn,om + p;’”“ [m(r) — Ins(1) - Z L-%(ﬂj + Z p,,ﬂf,-(r)}
N i=1 i=1
subject to the initial values
aU,0) = S, V0= HEEE), n=1.,N -1, (2.25)

this provide temporal differential system with initial conditions. The numerical approach of such system
will listed in Subsection 2.3.

2.3. System of Temporal Differential Equations
Here, we numerically treat the temporal differential system with initial conditions
W.@t) = G, W@, -, Wau@®), O<oa<l, r=L...,.R 1e]0,T]
W,.0 =1, r=L...,R,
where, G, W ,(@),..., W4@®), r=1...,R,are given functions. Shifted Jacobi—Gauss—Radau colloca-

tion is assigned for temporal discretization, which is more reliable for treating with such problems.
We approximate W' ,(¢) as

(2.26)

W () = Za,j@“"z e, =19 (2.27)
The temporal derivative °Wr(t) is evaluated as

M
W)=Y a,, ”0‘2—*"3’2“9}““2“ By =19 (2.28)
=0 r
Thus, we get

M
Q (f) Za"j Jj+ O('2 + B2 +1 ((X2+] Bz*l)(t) e, Zal,j ((Xz Bz)(t), Za% ; ((12 BZ)(t) 0,
£ (2.29)
r=1...,%, te][0,T],
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and

za,,@‘“z Poy=1, r=1...,% (2.30)

Combining the initial conditlons with the above-mentioned equations and equalizing the residual of
(2.26) by zero at (RH) shifted Jacobi—Gauss—Radau collocation points give us
Q@) =0, r=1..,R s=1..%, (2.31)

the rest (R) algebraic equations are outputted by the initial conditions as
Za,j@(“z Poy=1, r=1...,%R (2.32)

Finally, we have (R(H + 1)) algebralc equations

(%ﬁ”) =0, r=1..% s=1...%

(2.33)
Za, j@<°‘2 Poy=1, r=1...,%

The numerical approach of the previous system will acquired by using Newton’s iterative method.

3. APPLICATIONS AND NUMERICAL RESULTS

Here, the adequacy of the spectral collocation algorithms is verified by the obtained results. Problems
including local and nonlocal conditions are examined. Mathematica version 10 is utilized to carry out the
code.

Example 1. We test the next problem:

;9% 3_93 |g|2 aﬁf

ot ox’

the initial condition, the boundary condltlons are given such as the continuous problem has the next exact
solution

=0, (x,n)e[0,2n]x[0,1], (3.1)

F(x,1) = 7. (3.2)

In Table 1, the numerical results based on the maximum absolute errors obtained using the previous
algorithms are listed. Where

Eq, (x6,0) =Wy o(x,0) = Ux,0)|, (x,1)e[0,%£,T],
EVVN»M (xa t) = |OV .N,A/t(x5 t) - OV(xa t)| s (X, t) € [O’ 35 T]a

Exu(ut) = (B, (60 +(Ey, (D) (x,0)€[0,L,T]

and
Mo, (x,1) = Max{Ey  (X,1) Y(x,t) e [0,%,T]},
My (x,1) = Max{Ey  (x,1) V(x,1) € [0, L7171},
M y(x,1) = Max{Ey y(x,t) V(x,1) € [0,£,T]}.
Space graphs of real and imaginary parts of the numerical solution of problem (3.1) are shown in Fig. 1,

where o, =3, = %, o, =p,= —%, N = M = 22. While in Fig. 2, we recognize the outright matching of

numerical and exact solutions in its real and imaginary parts, where o, =, :%, o, =B, =0,
N =M =22. Also, t-directions curves for real and imaginary parts are plotted in Fig. 3, where
o, =B, =0, =B, =0, N = M = 22. Moreover, we sketched in Fig. 4 the logarithmic graphs of M, (i.e.,

log,, My) obtained by the present method with different values of (N = Ml = 2,4,6,...,22) for the given
two cases.

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol.61 No.9 2021



1438

ABDELKAWY et al.

Table 1. Maximum absolute errors of problem (3.1)

(N s -/‘/L) M RIS M V x. M N M WUy MOV.N,.M M N, M
051—[31=%,0L2—Bz —% 0‘1=Bl=(xz=f)2=%

(2,2) 3 2.43947 3 3 2.45368 3

(6,6) | 1.40114x107" | 8.58788x 107 | 1.40114x 107" | 1.40114x107" | 9.91275x 107> | 1.40114x107"
(10,10) | 2.69366 x 10™* | 1.55293x10™* | 2.69366 x10™* | 2.69366x10™* | 1.5104x107* |2.69366 x107*
(14,14) | 1.76464 x 1077 | 1.73355x107" | 1.78742x 107" | 9.3633x10°° |7.02974x10™® | 9.3633x10°°
(18,18) | 2.8662x107"1 | 2.01341x107"" | 2.96815x 107" | 9.86863 x 1072 | 7.24454 x 1072 | 9.86863 x 1072
(22,22) [ 3.38618 107" | 2.10942x 107" | 3.57703x 107" | 4.60743x 107" | 4.21885x 107" | 4.82021x 107"

(2,2)

(6,6)
(10,10)
(14,14)
(18,18)
(22,22)

(&9]

2
7.65346 x 107
1.26474x107*
3.89901x107*
3.72602 x 107"
2.9976 x107"

=B =0,=p,=0

1.54616
5.90733x 107
8.50239 107

3.843%107°
2.83817x 107"
3.88578x 107"

2
7.65346 x 107
1.26474x107*
3.89901x107*
3.72602 x 107"
3.92523x107"

0‘1:0522%731:[52

2.31443
8.9755% 107
1.87895x 107
3.06267 x 107
1.08205% 107"
5.44009 x 107"

2.19137
7.52669 x 107
1.72272x107*
4.22171x1077
1.10754 x 107"
6.43929 107"

=0
2.35555
9.14316 x107*
1.98787x107*
4.34246 x 107
1.17568 x 107"
8.42966 x 107"

Example 2. Now, consider the following

with the initial, boundary and integral conditions

i ST 2 =0, Gune l0.1110.1)

1
%(0,1) = e, f %F(x,)dx = —i(=1 + e >, %(x,0) = e,
0

(a) Real part

(b) Imaginary part

(3.3)

(3.4)

Fig. 1. Space graphs of real and imaginary parts of the numerical solution of problem (3.1).
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(a) Real part (b) Imaginary part
1.0 —/~ 1.0F
0.5F 0.5+
ko) 0 i 5 A
= ~u(x, 0.3) \ Y o VN, m(x, 0.3)%
N —up, p(x, 0.3) ‘V:"::‘ g ~ VN, M(X, 0?}\) ‘::9.
0.5 L u(x, 0.5) > = VN, M(X, 0.5) k
e uy, yx, 0.5) - v, m(x, 0.5)
= u(x,0.7) = vy, m(x, 0.7)
-1.0 _|7 . |M(x7 ?7) -10 1 1 i ‘l/Nq M(T7 0'7? 1 |
0o 1 2 0 1 2 3 4 5 6

X

Fig. 2. x-directions curves for the approximate and exact solutions of real and imaginary parts of problem (3.1).

(a) Real part (b) Imaginary part
3.5x 10715L
3% 10-15 3.0x 107131
X I N
w 2.5x 10754
- < 2.0x 1075
-15 .0 x H
\2; 2x 107" 4 :
= o 1.5x 1075H
=
<1075 1.0 x 10715}
5x 10716}
O -I 1 1 1 1 1 O_I 1 1 1 1 1
0 02 04 06 08 1.0 0 02 04 06 08 10
t 1

Fig. 3. ¢ -directions curves of real and imaginary parts of the absolute error of problem (3.1).

1
(a)alzﬁlZGZZBZZO (b)alzﬁlz_azz—B2:§

 Logio M,
e
_

Logy Mg

10 I~ —_—— MEV \ —10 i MEVNM \
MENM \ MENM \
. L 158,

5010 15 20 5010 15 20
N=M= N=M=

-15

Fig. 4. M convergence of problem (3.1).
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Table 2. Maximum absolute errors of problem (3.3)

(N, L) Moy My, , My Moy My, My

o =B =0,=p,=0 0‘1=Bl=%,052=[32=0
(2,2) | 3.28221x107" | 6.81393x107" |7.56323x 107" | 2.18004 x10™" | 4.73801x 10" |5.21549x 10"
(4,4) | 1.678x107% |4.09803x 107> |4.42827x107% | 9.65256 10> |2.98926 x 107> |3.14125x 107
(8,8) | 1.53505x10™° |3.61387x10™° |3.92637x10™° | 8.57355x1077 | 2.50059 x10™° |2.64348 x10°°
(12,12) | 2.01904 x 107" | 3.31546 x 107" | 3.88185x107"" | 1.38719x 107" | 2.2471x107"" | 2.64079x 107"
(16,16) [ 1.09024 x 107" | 6.23113x 107" | 1.15051x 107" | 6.34492 x 10™'* | 8.70415%x 10™** | 9.24781x 107"

(2,2)

(4,4)

(8,8)
(12,12)
(16,16)

0€1:07131:—0L2:—Bz:l

1.25532 %107
5.47096 x 10~
6.91267 x 107
7.68041x 107"
1.24067 x 107"

3.93666 x 107"
1.80896 x 107
1.15202 %107
1.04553% 107"
8.09353x 107"

2
4.04973x10™"

1.84737x107°
1.34351x107°
1.29731x 107"
1.24409 x 107"

0(120(2:%’[31:[32:_%

1.15929x10™"

2.9547 %107
5.57136 x107
6.43552x 107"
1.13909 x 107"

2.85836 x 10"
1.55312x107°
9.12882 %107
8.31712x 107"
1.99174x 107"

3.08451x10™"
1.57013 %107
1.06946 x10°°
1.05162x 107"
1.99436 x 107"

the exact solution for the previous equation is

gi(x t) — e[(x—zf)

3.5)

In Table 2, the numerical results based on the maximum absolute errors obtained using the previous
algorithms are listed. Space graphs of real and imaginary parts of the absolute error of problem (3.3) are

shown in Fig. 5, where o, = 3, = o, =, = 0, N' = Jl = 16. While in Figs. 6—8, x- and t-directions curves
for absolute errors Ey , Ey , Ey 4 are plotted, where o, =B, =a, =B, =0, N = =16. Even
though few values of N and M, the accurate results have been spotted in these tables. This is consistent

with which was predicted in case of using a spectral collocation method. Likewise, these results bring to
light the reasonability convergence of the shifted Jacobi collocation method for such problems.

E1x108

LQSS x 10—14

(a) Real part

1.0

(b) Imaginary part

Fig. 5. Space graphs of real and imaginary parts of the absolute error of problem (3.3).
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t
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(b) Imaginary part

1441

0

02 04 06 0.8

t

Fig. 6. 7-graphs of real and imaginary parts of the absolute error of problem (3.1).

W
S
X
—_
<
%
T

(a) Real part

O F

02 04 06 08 1.

X

0

3.0 x 10714

2.5x 10714

(x,0.5)

- 15 x 10714}
=

N 20x 107

5.0x 10715

2.0 x 107141

|

(b) Imaginary part
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4. CONCLUSIONS

This paper adopted fully shifted Jacobi’s collocation method to study Chen—Lee—Liu equation that
discusses soliton propagation down the optical fibers with perturbation terms incorporated into the wave-
guides. The powerful numerical scheme gave way to a number of impressive numerical results that prove
high efficiency of the algorithm. The study was carried out with both local and nonlocal conditions.

The results of the algorithm pave way to conduct further additional research in this field to display
additional results in future. One avenue is to consider Chen—Lee—Liu equation with differential group
delay and then further along study the model with additional optoelectronic devices such as in magneto-
optic waveguides. Subsequently, this model will be treated with the same algorithm for DWDM topology.
Thus, a lot lies in the bucket list!
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