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Abstract
In the present work, the formation of optical vortex in waveguides, with spatial dependence 
of the nonlinear refractive index, is studied. The propagation of such type of laser pulses is 
governed by a system of amplitude equations for x and y components of the electrical field 
in which the effects of second-order dispersion and self-phase modulation are taken into 
account. The corresponding system of equations is solved analytically. New class of exact 
solutions, describing the generation of vortex structures in the optical fibers with spatial 
dependence of the nonlinear refractive index and anomalous dispersion, are found. These 
optical vortices admit only amplitude type singularities. Their stability is a result of the 
delicate balance between diffraction and nonlinearity, as well as nonlinearity and angular 
distribution. This kind of singularities can be observed as a depolarization of the vector 
field in the laser spot.
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1 Introduction

The classical optical vortices are referred to beams that have singularities in the phases. 
These structures are solutions of two-dimensional paraxial scalar equation of Leontovich 
(Nye and Berry 1974; Soskin et al. 1997). They are usually created outside the laser cavity 
by using optical holograms and different optical masks (Rozas 1999; Aksenov et al. 2018; 
Hansinger et al. 2016; Coullet et al. 1989; Heckenberg et al. 1992; Brunet et al. 2010) and 
admit angular dependence of the electrical field or helical phase distribution.

On the other hand, new vector type of optical vortices with singularities in the com-
ponents of the amplitude of the electrical field were recently found (Bozhikoliev et al. 

This article is part of the Topical Collection on Photonics:Current Challenges and Emerging 
Applications.

Guest edited by Jelena Radovanovic, Dragan Indjin, Maja Nesic, Nikola Vukovic andMilena Milosevic.

 * Valeri Slavchev 
 valeri.slavchev@mu-plovdiv.bg

Extended author information available on the last page of the article

http://orcid.org/0000-0002-2284-7259
http://crossmark.crossref.org/dialog/?doi=10.1007/s11082-022-03707-7&domain=pdf
anjan
Highlight

anjan
Highlight



 V. Slavchev et al.

1 3

  346  Page 2 of 9

2019). The behavior of optical vortices in different waveguides is described by the non-
linear amplitude equation in which it is included a term, corresponding to the spatial 
dependence of the nonlinear refractive index n2(x2 + y2) . Amplitude modulations in 
such optical structures are observed in the case of studying the vector form of the elec-
trical field and they are investigated in the frames of a system of two scalar nonlinear 
amplitude equations for the x and y components of the vector electric field. A solution 
of the 3D+1 nonlinear Schrodinger equation for optical fibers with spatial dependence 
of the nonlinear refractive index was found for the first time in a vector form by the 
authors in Dakova et al. (2007) and Kovachev et al. (2004).

In our previous work, vortex structures with spatial dependence of the linear refrac-
tive index in gradient inhomogeneous waveguides were studied (Dakova et al. 2019). A 
new class of vortex solutions for optical fibers with a concave refractive index profile 
has been found. Their stability is due not only to the balance between diffraction and 
nonlinearity, but also to the nonlinearity and angular distribution. The spatial depend-
ence of the linear refractive index leads to the formation of optical vortices in the field 
of the intensity components of the laser pulse. This naturally raises the question: is it 
possible such type of vortex structure to exist in a medium with a spatial dependence of 
the nonlinear refractive index?

The main goal of present work is to find analytical vortex solutions of the vector non-
linear amplitude equation for optical fibers with quadratic nonlinear refractive index.

In recent decades, many authors (Wang et al. 2018; Zhang et al. 2020; Porfirev et al. 
2021; Fatkhiev 2021) have reported a significant progress on the generation of opti-
cal vortices. Their applications in active resonators have been demonstrated in Maguid 
(2018), Uren et  al. (2019) and Sroor et  al. (2020). The dynamics of the vortices dur-
ing their propagation in optical fibers has been practically investigated by the authors 
in Kotlyar et al. (1998), Bolshtyansky et al. (1999), Karpeev and Khonina (2007) and 
Khonina et al. (2010). The behavior of these structures in a gradient fiber is observed by 
authors in Slavchev et al. (2020), Dakova et al. (2018) and Slavchev et al. (2021). Heli-
cal structures of the vortex solutions for the components of the electical field are found 
in Ng et al. (2010). Optical vortices have a number of applications in the field of high 
resolution microscopy, optical tweezers, quantum information transfer, optical vortex 
trapping and many others (Rui et al. 2015; Gahagan and Swartzlander 1996; Datta and 
Saha 2020).

2  Basic equation

The equation describing the propagation of optical vortices in waveguides with spatial 
dependence of the nonlinear refractive index in the vector form Dakova et al. (2007) and 
Kovachev et al. (2004) is:

where A⃗ is the vector amplitude function of the pulse envelope, t is time, � , � and � are con-
stants, characterizing respectively the number of oscillations under the pulse’s envelope, 
dispersion and nonlinearity of the fiber. Here, Δ⊥ is the transverse operator of Laplace. The 
operator and the constants are of the kind:

(1)−i𝛼
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where k0 is the wave number, u, k′′ , n2 are the group velocity, the second-order of linear 
dispersion and the nonlinear refractive index of the medium, z0 = ut0 is the initial longi-
tudinal length of the pulse ( t0 is time duration of the pulse) and A0 is the magnitude of the 
initial amplitude of the pulse. We have in mind that A⃗ = (Ax,Ay, 0) . It is accepted that the 
axis Oz coincides with the geometrical axis of the fiber. Thus, it is convenient to work in 
cylindrical coordinates:

After a couple of transformations, the scalar equations describing the evolution of the com-
ponents Ax and Ay of the vector function A⃗ , written in polar coordinates, can be presented 
as follows:

3  Mathematical method

In order to find the solutions for the components Ax and Ay of the vector amplitude func-
tion A⃗ of the pulse, the following substitutions in the system of Eqs. (4) are made:

where a and b are constants about to be defined, Px and Py are new unknown real functions. 
After several transformations we obtain:

The left sides of the equations above are the same constant expressions. Their right sides 
are functions of the variables r and � . In order to fulfill the equalities, we assume that:

From this equality we find a connection between the constants a and b:
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Having in mind the expression (7), Eqs. (6) take the form:

We make another pair of substitutions as:

where n = const . By using the expressions (10), the system of Eqs. (9) can be presented in 
the form:

Taking into account the nonlinear terms in Eqs. (11), it is convenient to search for solutions 
of the kind:

where B, m, � , � are constants, about to be defined.
By substituting expressions (12) in the system of differential equations (11) and after short 

transformations, we obtain:

To fulfill the equalities in (13), it is needed, that the coefficients in front of the respective 
trigonometric functions in both equations to be equal to zero. In this way, we obtain the fol-
lowing system of two algebraic equations:

By using the system of equations above we can define that:
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Thus, the following exact analytical solutions for the functions Px and Py , describing the 
optical vortices, propagating in fibers with spatial dependece of the nonlinear refractive 
index are found:

As a next step, going back through all the substitutions and assumptions made by now, the 
solutions for the components Ax and Ay of the vector amplitude function A⃗ of the optical 
vortex, satisfying the basic equations (1), can be presented in the form:

where a = −
∣�∣

2�
b2 and m is an arbitrary real number.

4  Graphics of vortex solutions

In Fig. 1a, b the intensity profiles of the vortex structures for the x and y components of the 
vector A⃗ are presented. The maxima in the intensity of the Ax component coincide with the 
minima in Ay . As a result the ring structures in the field of the total pulse intensity are not 
observed and in the intensity profile ∣ A⃗ ∣2 vortices are not found (Fig. 1c) due to the com-
pensation of the rotation in the two components Ax and Ay.

The rotation of the vector A⃗ in the center of the optical vortices is shown in Fig. 2. The 
vector diagrams of this type of amplitude vortex structures are characterized by depolariza-
tion in the spot of the laser pulse.
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Fig. 1  Intensity profiles of the components a Ax , b Ay , presented by Eq. (17) and c the total intensity profile 
for m = 1 . The maxima in the intensity of the Ax component coincide with the minima in Ay . That is way, 
the ring structures in the field of the total pulse intensity are not observed
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On Fig. 3 the intensity profiles for the components x and y of the vector A⃗ in the case of 
higher value of the vortex parameter m are presented. It is shown that the vortex solutions 
admit more rich internal structures. The significant growth in the number of rings leads 
to a narrowing of their minima and maxima. This trend is intensified by the increase of 
the vortex parameter m. As it can be seen, for a higher value of m (in the case of m = 4 ) a 
tangible change in vorticity and depolarization in the vector diagram (Fig. 4) is observed. 
Comparing this result with the vector diagram for m = 1 we can conclude that for m = 4 
the level of depolarization is significantly greater.

The obtained results present two different possibilities for the generation of vortex 
structures in the field of the intensity profile of the components of the vector amplitude 
function: by filtering one of the components—linear polarization or by observing depolari-
zation in the vector diagram in the spot of the optical pulse.

Fig. 2  Diagram of the vector 
amplitude function for m = 1 . 
Significant rotation of the vector 
A⃗ in the center of the vortices is 
observed. The direction of the 
vector field has different values at 
different points of the pulse spot 
(depolarization)

Fig. 3  Intensity profiles of the components a Ax , b Ay , represented by Eq. (17) and c the total intensity pro-
file for m = 4 . The intensity profiles of the components admit more rich internal structures. The significant 
growth in the number of rings leads to a narrowing of their minima and maxima
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5  Conclusion

In the present work vortex solutions for the components Ax and Ay of the vector amplitude 
function A⃗ are found. The graphics of the obtained solutions for different values of the 
vortex parameters m are presented. If we look at the intensity profiles of the components 
(Figs. 1, 3), the maxima in the Ax coincide with the minima in Ay . As a result, the ring 
structures in the field of the total pulse intensity are not observed, due to the compensa-
tion of the rotation in the two components. The value of the parameter m determines the 
number of rings observed in the profiles of the intensity components of the vector ampli-
tude function. The significant growth in the number of rings leads to a narrowing of their 
minima and maxima. This trend is intensified by the increase of the vortex parameter m. 
Depolarization in the diagram of the vector field is observed. Each point of the spot of the 
optical pulse has a different orientation of the field.
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