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We propose a scheme to generate stable vector spatiotemporal solitons through a Rydberg electromagnetically
induced transparency (Rydberg-EIT) system. Three-dimensional vector monopole and vortex solitons have been
found under three nonlocal degrees. The numerical calculation and analytical solutions indicate that these solitons
are generated with low energy and can stably propagate along the axes. The behavior of vector spatiotemporal
solitons can be manipulated by the local and nonlocal nonlinearities. The results show a memory feature as these
solitons can be stored and retrieved effectively by tuning the control field.
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Higher-dimensional spatiotemporal solitons
(STSs) have attracted a lot of interest in many
fields.'=8] In nonlinear optics, spatiotemporal soli-
tons are unstable in Kerr media due to the Kerr
nonlinearity.[?1% To reduce this rapid distortion, short
pulses with high powered lasers were commonly ap-
plied in experiments to generate solitons.'12 As
these high energy solitons are hard to manipulate in
optical information processes, there is another way
to generate solitons with low energies. Moreover, the
solitons with low energy are found to have memory
features, and the storage and retrieval of these solitons
are possible.[]

A number of optical systems have been proposed
to satisfy these demands in theoretical and experi-
mental studies.4~19 For example, Edmundson and
Skryabin demonstrated a robust bistable STS with
quadratic nonlinearities.!'*'% Desyatnikov et al. and
Ge found STSs in an optical media with higher order
nonlinearities.['6171 Mihalache et al. obtained stable
spinning STSs by tuning the focusing and defocus-
ing nonlinearities.!'®! Zhang et al. revealed that 3D
solitons can stably exist in atomic systems with spin-
orbit coupling interactions.!'” Systems with Rydberg
atoms are proven to be an effective media to generate

TThese authors contributed equally to this work.

stable solitons with low energies for the strong and
long-range optical nonlinearities between the Rydberg
atoms.[?°=2% Ultra-cold Rydberg atoms in a Bose—
Einstein condensate is the latest hot topic of research
for finding stable solitons with novel characters.[26—29]

Despite the above progress, realizing single 3D vec-
tor STSs in Rydberg atomic systems is an open ques-
tion. We focus on this question and present a sys-
tematic method to generate low power, stable spa-
tiotemporal solitons with local Kerr nonlinearity and
nonlocal nonlinearity.

Model. A 5-level Rydberg atomic system is con-
structed in Fig.1(a). Four laser fields are coupled
to this 5-level atomic system. A double A-type EIT
configuration is constructed by states |1), |2), |3), |4),
the probe (£2,), signal (£25) and control ({2;) fields;
|5) is coupled to |4) through auxiliary laser field (2,.
In our work, the strontium (3¥Sr) atomic gas is chosen
as a potential atom to realize the system.!39—32] The
states above are [1) = |551/27F =1,my = —1>, [2) =
5810, F =2,mp = 1), |3) = |58 2, F = 2,m; = —1),
[4) = |5S1)2, F =2P35,mp =—1), and |5) =
|nSl/2>. The main quantum number is n = 60.

The Hamiltonian of this 5-level Rydberg atomic
system is Hy(t) = N, fj;o d3rHy(r,t), where N, is
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atomic density. In the interaction picture, the Hamil-
tonian density is written as

4
I:IH(’Iﬁt) = ZhAijj(r7t) - h[QpS14(T,t)

j=1

+ 2,845(r, t) 4+ 2.524(r,t) + 2:534(r,t) + Hee.

LN, / i@ S (! OBV (7 — 1) S5 (r, 1), (1)

where Sj; = [1)(j] expi[(k; — k;) -7 — (w — w; + A —
At], Ay = wp—ws—(wa—w1 ), A3 = wpFwe—(ws—wr)
and As = wp +wa — (w5 —wy) are the two-photon de-
tunings, Ay = wp — (wWa —w1). 2, = (ep - Pa1)ep/h,
Qc = (ec ‘p43)5c/ﬁ, Qs = (es 'p42)55/ﬁ and Qa =
(ea - Psa)ea/h are the half Rabi frequencies. Substi-
tuting the Hamiltonian to the optical Bloch equation
dp/dt = —i[H,p|/h — I'[p], we can get the density
equations of the system [see the Supplementary Ma-
terial].
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Fig. 1. (a) The 5-level Rydberg atomic system with dou-
ble EIT configuration. States |1), |2), |3) and |4) consti-
tute the double standard A-type EIT configurations. The
probe/signal/control /auxiliary field (§2y/62s/2c/£2a) cou-
ple the transitions |1) — |4), |2) — [4), |3) — [4) and
|[4) — |5). Iy is the spontaneous emission decay rates,
Aj is the detuning. (b) Illustration of the system. (c)
Storage and retrieval of monopole STSs (upper) and vor-
tex STSs (lower) in the general nonlocal response, illus-
trated by isosurface plots of the intensity of vector STSs
at z = 0, 2Lq;ig, 4Lqie, where Lgig is the diffraction dis-
tance.

The equation of motions for the (2, and (2
is governed by the Maxwell equation V?E —
(1/c2)0?E)ot* = [1/(e0c?)]|0*P/0t?, where P =
N.Tr(pp). Under slowly varying envelope approxi-
mation, the probe field {2, and signal field {2 satisfy

0 190 1 02 0?
(-t — (L )0
iz T e e T an <8w2 * ay2> P
+ K14(24)Pa142) = 0, (2)

where k) = Wp(s)/¢, K14 = Nakyp |P14 - ep|2/250ﬁ and
Kog = Noks [pas - es|” 220k

To obtain divergence-free solutions for the one- and
two-body correlators of the order of magnitude in the

density equations, we assume p;; = <5'jl> and pj1 0 =

<5'j15' ,“,>. In order to solve these equations, the phys-

ical quantities are expanded as 2, = > mzlsm()}(jm),
2m+1
Qs _ Zm:lgmgém)7 pj1 = Zmzog%n-‘rlp;ler )7

2 2
pit = Nm=12"pT™ pr1 = 1+ Y 2",
2m ,(2m)

piLi = Zm:1€2mﬂﬁﬁ)» Pt = D m=18""p 4/
it = Lommae2 LT and i
ZmZQEQmpﬁ’ZQ (4,1, v = 2,3,4,5). The space and
time scales are also expressed as z1 = ez, y1 = €y,
2z =€'2(1=0,1,2), and t; = €'t(l = 0,1).['3] Substi-
tuting these expansions into Maxwell’s equation and
Bloch’s equation, we obtain the following solutions or-
der by order.

At the zeroth and first order approximation, we
get the Rabi frequencies ngl) = Fiei, Qél) = Fye'fs
with 0, = K, (w)zo —wto, 0s = K(w)zo —wtp. Fy and
F5 are undetermined envelope functions, K,(w) and
K (w) are linear dispersion relations with

w K *
K (@)= + 5 [(whdan) eotdan) (o1~ + 2epis).
3)
w K
Ku(w) =7+ Pl dsa)(w + doa) (ol — i)

+ (w+ dSQ)QcpZ:(’,O) +(w+dse) 2 pé?l)] .4

Here D (2) = (w+ ds1(52)) |92+ (w+ d31(32)) 2.7 -
(w+ds1(32)) (W + daraz)) (W +ds1(52)), djt = A5 — A+
ivi (1,5 =1,2,3,4;i # j), where v, = (I + 1) /2 +
¥, T
ij
and pﬁ) (j,1 =1,...,5), the density matrix elements
in the zeroth and first order approximation are given
detailedly in the Supplementary Material.

At the second order approximation, the envelope
functions satisfy ¢ [0F;/0z1 + (1/Vyu)0F;/ot1]] = 0
(1=1,2), where V;; = 1/K;(K; = 0K, /0w) (j = p, 5)
is group velocity. The laser field then has this expres-
sion 1; = Fjexp(—pu2), where p; = e~ 2Im(K;) is the
absorption coefficient.

At the third and fourth orders, the probe and sig-
nal fields satisfy the dimensionless form

=> i 'y?jep is the dephasing rate; p;?)

- +

2.81/11(2) + (a2¢1(2) 82¢1(2) 321/&(2))
Os &2 on? or?
+ (911(22)|¢1(2)|2 + 912(21)|1/J2(1) |2)1/)1(2)

+ a/dsrle(Tl —r)1)* i) =0,  (5)

where the units of the physical quantities are set to be
1. Here vy (2) = 2,(5)/2p(s)0 are dimensionless quanti-
ties, £2,()0 is the initial frequency of the probe/signal
pulse; s = Z/(2Ldif‘f)7 (577’) = (x,y)/Rm T=1t— Z/vav
with Lgig = 2wa(2)/c and Ry = Ry = Ry be-
ing the typical radius of the probe and signal pulses;
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a = 2N, R3|¢o|*Lair/ D(w) is the degree of nonlocal-
ity; g1 = —2Wj|20|*Lair are the interaction coef-
ficients, where W71 and Wss are the nonlinear self-
focusing coefficients, W15 and Ws; are the nonlinear
cross-phase coefficients. The detail expressions of Wy
(j,1 = 1,2) are given in the Supplementary Material.
Three-Dimensional Vector Spatiotemporal Solitons
and Their Memory Feature. In this study, we assume
12y = 1/11(2)6“’5, where b is the propagation coeffi-
cient. Then the energies of solitary wave are Uy(p) =
If |¢1(2)|2 dédn, and total energy is U = Uy + Us.
The eigenvalue of Eq. (5) can be obtained by using
the numerical and analytical methods.[?3-34 With per-

(U] () — vf@))e’\*s]eibs, where v(1,2) is the stationary
solution of Eq. (5), u1(2),v1(2) < Yo1(2) are the per-
turbation terms, and A is a complex parameter indi-
cating the perturbation growth rate. According to the
criteria, the soliton solutions can be stable if Re(\) =
0.3%] The parameters we choose in this system are
Ry = 12um, 70 = 1.1 x 107%s, I'y; = 0.21m MHz,
Iy = 227 x 10MHz, I5 = I'ys = 27 x 16.9kHz,
Ay =0.27x 100571, A3 =1.68 x 106571, Ay = 1.1 x
10871 Ay = 237 x 107s7H, N, = 1.0 x 102 em ™3,
2. =020 =12x10"s"1, 2, = 2,0 =5 x 108571,
In this case, the solidary wave is generated with small
power Pyo) = 1.7nw, and propagates with very slow

. ~ _6 . . . 10
turbation, we have 11 (2) = [o1(2) +(11(2) +01(2)) € + speed Vy, ,, & 2.47 x 107"¢ (point B in Fig. 2).00]
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Fig. 2. (a)-(e) Energy flow of probe and signal pulses versus the relative local parameters g; (j,! = 1,2) and
nonlocal nonlinearity strength «.. (f) Ux—b relation with different .. The solid lines represent the numerical solutions,
and the dotted lines are the analysis results. The other parameters are set to be 1, i.e., gj; = o = 1. Point A:
Uz =15, =0,b=1. Point B: Uz =14, a =b=1. Point C: U3 =18, a =5, b=1.1.
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Fig. 3. (a)—(d) Stability areas for 3D vector STSs in the
(951, @) plane. The stable shaded regions appear in blue
and unstable regions appear in green. Point A (local):
gji = 5, « = 0. Point B (general nonlocal): g;; = 1,
a = 1. Point C (strongly nonlocal): g;; =6, a = 5.

Figure 2 shows the energy of probe (U;) or sig-
nal (Us) pulses. In Figs.2(a) and 2(b), one can see
that Us initially decreases slowly with gyq(12). When
g11(12) > 0.92, Us starts to drop rapidly, until nearly
zero, and it remains constant. Nevertheless, U; in-
creases rapidly to maximum, then it decreases slowly
with g11(12). On the contrary, Uy (2)—g21(22) relations in
Figs. 2(c) and 2(d) show the opposite trends. Further,
the total energies of two pulses stay almost the same,

as long as parameters o and b are not changed. The
numerical solutions (solid lines) agree well with the
analytical solutions (dotted line). Figure 2(e) shows
the Uy 2y~ relation, where only Us is plotted because
Uy overlaps with Us in the simulation. One can see
that Uy (o) decreases monotonously with «, so the to-
tal energy decreases when tuning «. Further, when
a < 1.47, there is a great difference between the an-
alytical solution and the numerical simulation; how-
ever, they agree very well when o > 1.47. In Fig. 2(f),
U monotonically increases with b. According to the
VK stability criterion, these vector STSs found here
are stable when dU /db > 0.6 Further, we find that
the larger the «, the larger the stability ranges vector
STSs have.

Figure 3 shows the stability areas for 3D vector
STSs in the (gj;, ) plane with j,I = 1,2. Numeri-
cal results display that vector STSs exist and are sta-
ble in the blue area. Simulation results show that
five parameters (i.e., g11, 912, g21, g2, and «) pro-
foundly affect the stability range of solitons. Compar-
ing Figs.3(a) and 3(d) with Figs.3(b) and 3(c), we
can find that the cross-phase modulation parameters
(i-e., g12 and go1) are more robust than the self-phase
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modulation parameters (i.e., g11 and go2).

Vector soliton solutions to Eq.(5) are given in
three nonlocality degrees: (i) R, < Ry (local re-
sponse region), (i) Ry, ~ Ry (general nonlocal re-
sponse region), and (iii) Rp > Ry (strongly nonlo-
cal response region), where Ry, is the Rydberg block-
ade radius.l*” The dynamical properties of 3D vector
STSs in local (dot A), general nonlocal (dot B) and
strongly nonlocal (dot C) response regions are plot-
ted in Fig.4. Three-dimensional monopole solitons
(soliton energy distributes in the center with only one

Fig. 4.

peak) and vortex solitons (soliton energy distributes as
a vortex profile with the smallest energy in the center)
are both shown under a random perturbation. Note
that monopole solitons are more stable than vortex
solitons in our system in all three nonlocality degrees,
which is similar to the existing reports.'8:3%39 Com-
paring the stabilities of solitons in three nonlocality
degrees, we find that 3D vector STSs in strongly non-
local response region are the most stable ones. On the
contrary, solitons in local response region are the most
unstable ones.
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Dynamical properties of 3D vector STSs in local (al)—(a4), general nonlocal (bl)—(b4) and strongly

nonlocal (c1)—(c4) response regions, corresponding to dots A, B and C in Figs.2 and 3, respectively. Isosurfaces
of 3D monopole STSs [(al), (bl), (c1)] and vortex STSs [(a2), (b2), (c2)]. Phases of 3D vortex STSs [(a3), (b3),
(3)]. The first three columns are plotted under a random perturbation at s = 27. [(a4), (b4), (c4)] Linear-stability
spectra of monopole and vortex STSs. Other parameters are the same as Fig. 3.
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Fig. 5. (a)—(c) Energy flow of |Ui| (i.e. monopole STSs, solid blue), and |Uz| (i.e. vortex STSs, dashed red) at
s = 0,3/4,3/2,9/4,3 with three nonlocal response regions. (d)—(f) Evolution of monopole STSs and the vortex
STSs. [(a), (d)] Strongly nonlocal response. [(b), (e)] General nonlocal response, [(c), (f)] Local response. Other

parameters are the same as Fig. 3.
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The dynamics of vector STSs in this system may
be tested by numerically solving Eq. (5) with the fast
fractional Fourier algorithm.[%! Figure 5 displays the
evolution of vector STSs in strongly nonlocal [(a), (d)],
general nonlocal [(b), (e)], and local [(c), (f)] response
regions. Figures 5(a)-5(c) show the energy flows |Uy|
(monopole solitons) and |Us| (vortex solitons). One
can see that the total energy of monopole and vortex
solitons almost remains the same in both strongly non-
local and general nonlocal response regions, although
|U1| and |Uz| show some oscillations with the propaga-
tion distance s in strongly nonlocal response region.
When s > 2.1, |U;| suddenly increases and |Us| de-
creases. However, |Uy (2| and the total energy decrease
with s in the local response region [see Fig. 5(c)].

Further, in strongly nonlocal response region, one
can find a quasi-elastic collision phenomenon between
monopole and vortex solitons in the propagation [see
Fig.5(d)]. The distribution of the vector STSs is basi-
cally unchanged, and the solitons remain stable after

the collision. This collision phenomenon is absent in
the general nonlocal and local response region. The
distribution of the vector STSs changes significantly
in general nonlocal response region [Fig. 5(e)] and pro-
duces collapse in local response region [Fig. 5(f)].

Next, we investigate the memory feature of the
solitons by modulating the control field. The control
field has two states, switch-on and switch-off.[*%] The
input probe and signal pulses are taken as a funda-
mental Gaussian mode and re”"Q, respectively. The
memory feature can be described by the efficiency 7
and fidelity nJ2.

The storage and retrieval of the 3D vector STSs are
shown in Figs. 1(c) and 6. Figure 1(c¢) display the nu-
merical results of the intensity of the probe and signal
pulse Uy(2)/Up during propagation. It is shown that
3D vector STSs can be stored and retrieved effectively
by the switch-on and switch-off of the control field.
There is still small deformation of the vector STSs,
after storage, due to dissipation.

Table 1. The efficiency and fidelity of the memory effect.

Nonlocal degree

Monopole solitons

Vortex solitons

efficiency fidelity efficiency fidelity
Local 0.80 0.70 0.75 0.71
General nonlocal 0.92 0.80 0.91 0.82
Strongly nonlocal 0.98 0.95 0.96 0.91
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(a) (b) (c)
_ E——ar—— =1 === Fm— = —— [ —
l’sui [Qeol & 1901 ® X [2e7o] & =l -/ 120l @ : 4 S
= |
& | | 1 1
E 1 1 | !
1
0
20
(d) () (f)
— == === ==== r——-1 === -——-
S 5 .
5 Jen® 1 @ T e @ o @ ! @
& (I Pl !
- (I P! !
I
0
-5 0 5 10 -5 5 10 —5 0 5 10
t/To t/T(] t/’TQ

Fig. 6. Memory feature of 3D monopole STSs and vortex STSs in the local [(a), (d)], general nonlocal [(b), (e)] and
strongly nonlocal [(c), (f)] response regions. The first row represents monopole STSs, and the second row represents
vortex STSs. The black dashed line shows the switch-on, switch-off, and re-switch-on of the control field |£2c79|.
The blue, orange and purple lines are |{2,5)70| at z = 0 (at the beginning), 2 = 2Lqig (during of the storage), and
z = 4Lg;g (after the retrieval), with Lq;g = 1.37mm. Other parameters are the same as Fig. 2.

Figure 6 display the memory effects of monopole
and vortex solitons in three nonlocal response re-
gions. The efficiency and fidelity of the memory ef-
fect are given in Table 1. In the local response region
[Figs. 6(a) and 6(d)], the vector ST'Ss have a tremen-
dous amount of deformation after storage due to the
imbalance of diffraction, dispersion and nonlinearity.
The efficiency and fidelity are relatively low for both
monopole STSs and vortex STSs. In the general non-

local response region [Figs. 6(b) and 6(e)], one can see
that after storage the vector STSs characterize a small
amount of wave shape deformation. However, in the
strongly nonlocal response region [Figs. 6(c) and 6(f)],
the monopole STSs (vortex STSs) retain nearly the
same wave shape after storage. Here, we obtain the
highest efficiency and fidelity. One can see that the
nonlocality is the critical factor in the storage and re-
trieval of the solitons.
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In summary, we have proposed a 5-level Rydberg-
EIT atomic system to generate stable vector spa-
tiotemporal solitons. The formation, propagation,
and stability analysis of 3D monopole and vortex soli-
tons are studied. The vector STSs are proven to be
stable and can be stored and retrieved effectively in
nonlocal response region. Our study provides a new
application of optical solitons in the optical informa-
tion.
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Text A: Expansion equations of optical Bloch equation

The density equations ,, of the system is obtained by substituting the Hamiltonian to the

optical Bloch equation ,ap/at=—i[H,p]/h—r[p]. For the 545 density matrix, we get the

following expansion equations of optical Bloch equation.

- a - * #
'(a + 0 +130) oy =100 + Tispis + Ty ps) = Qi+, £y =0, (A
- a - * *
I(a +10) 0 =1Ly ou +15000) —Qipr, +Q5 P, =0, (A2
- a - * *®
Ka +103) Py =110 + D0 P0a) = Qe oy +Q g =0, (A3
. a - * * * * * * * *
|(a+ [y + 15 +13) =T 5o +Qpp41 _Qp Put QP = Pyt QP = Q gt Qs —Q, p =0, (Ad)
. 0 .
'(a +T5) Pss =, PeatQ00s =0, (AS)
. 0 . .
(i ot +02) Pn + Qs Py — QP =0, (A6)
- a * *
(i ot +03) 03 + Q0 —Q, 0, =0, (A7)
. 0 .
(i a +041) P+, (01 = Pua) + Q2 + Qe Py +Q;, p5; =0, (AB)
. 0 ' '
(i o +0s1) 051 + Qs = QP — NaJ.der (F=1)pgea(r,rt) =0, (A9
.0 . .
(i o +03) Py + Qe —Q P =0, (AL0)

. 0 . .
(i x +04) P + Qi (02 = Pua) T QP + QP +Q, P, =0, (ALD)
1



¥ , ,
(i ot +0g,) 05, + Qo Pr = Qg — NaJ.der (F=1)pess(rrt) =0, (A12)
. 0 . . .
(i ot +0,43) P45 + Q. (P33 = Pus) + Q03 + Qpy +Q, P =0, (AL3)
. 0 ' '
(i + 0 Pis + Quis = Qs - N, [d°rV (r'=n)pg e (r.r ) =0, (AL9)

. a * * * ! ’
('a+ds4)p54 +Q, (04 = Pos) =y Psr = Psp = P~ Najdgr\/ (F=1)pgs(r',r,t) =0, (A15)

where d,-| :Aj_AIJriy“(i,j=1,2,3,4;i¢j), and y, :(rj+rl)/2+7/i?er: with T, = r,.

j<l
Here I'; denotes the spontaneous emission decay rate between states |j> and |I>,and ;/i?ep is the

dephasing rate between the states | j> and ||> .

Text B: Expansion equations of zeroth order density matrix elements and the first order
solutions

(i) At the zeroth (m = 0) order, equations for o9, o, P2, O, A, and pf) are given by

- . T,07 :
d, & 0 0 0 0]P= 0
o d, 0 & 0o o0]prY 0
0 0 d, 0 O o0|p| |ae-p2)| B
000 0 d 0 00 0
0 0 Q © d53* 0 || p© 0
L 0 0 0 0 O d54 4 Pég) | L _%pﬁ)
Equations for pl(f), pg), pég), and pﬁ) read
©
Tyt T, T T, Pu 0
Iy -T, 0 T, pég) _ 0 . (B2
) 0 Iy Ty Ps(g) i (Qcngo) - Qt*/?ig)
1 1 1 1 P9 1

0 _ 0 _ O _ 0 _ 0 _ 0 _ (0 _ (0 _
And oy =0, =04 =5 =003 =P =ps; =pPss =0.

(i) At the first (m =1) order, the solution for nonzero matrix elements reads

* 2 %
Q@+, @+ d ) — o)+l f i

i = ) © _Fe” =alFe” (B3
P = (0+dy)(0+ dgl)(gl(f ' i) +Q.pis” Fe' —a®Fe™ (B4)
1
péi) __ Q,(0+dy)(0+ d31)(gjL(j(L)) - pz(l?l)) + Qanpgo) Fleiﬂp _ aéi) Fleigp (B5)
1
- o+ )0+ do)(og - o) + 0+ 8% + @+ d) A A | e jop o (gg)

32 D2
2



*

o _ (0+dy,)(0+ dsz)(pé(z)) - pﬁ)) +(o+ d32)Qa,05(2) +(o+ dsz)Qcp:éO)

= Fe” =a)F,e”, (B7)
42 2 o T8
D,(w+dy,)
2 .
o Q. (0+dy,)(w+ dsz)(/)ég) - ngg)) +(o+d,) |Qa| péff) +(0+d5,)Q.Q, AgO) 0, _ ) Al BS
Ps =~ Fe™ =a;Fe™, (B8)
D, (w+ds,)

with other pﬁ) =0.

Text C: The second order solution

At the second order, the solution for nonzero matrix elements reads

l * 12 * _in"
(2) _ @ ! (€H] A
P = o (o Fe™ —piFe )

+d,,

-1 * . 0 6,
Y = €L i) SR,

| % Fe”,

+d,,
o _i[@+dy)(@+dy)al) + (01 dy)Qad - (0+ )00
Pu = 5
1
-1 ; 0 i,
Py Zm(ﬁaaﬁ) +i (?)—atl Fe”,
_1 * . a .
(2) —_— Q (2) +i 1) F e|65,
P32 Td, Q.o 2 )_8t1 >
o _ [(@+dy)(@+dy)a —(0+ds,)0.a5) — (@+d,)Q 08
Py = 5
2
-1 . 0 .
(2) = Q a(z) +i 1) Felas,
Ps2 +d52( a2 2)_&—1 2

) _ 4@ | |? al-2a2,) ) 2 _(-2a,1,)
Pu _a111|F1| e +a112||:2| e,
@) _ @ |E P al282) | 4@ | |2 a(-202,)
P22 —a221|F1| e +a222|F2| e,

2 _ 5 | |2 a(2a2,) ) 2 (2a,2,)
P33 _a331|F1| e +a<332|F2| e,

o =a2Ff

) _ 4@ |2 |? al2@2) | 42 |E |? a(-232,)
Pz = 431|F1| e +a432|F2| e,
2 _ 5 | |2 a(2@2,) ) 2 (28,2,)
Ps3 _a531|F1| € ’ +a532|Fz| e,

(2) _ A | |2 al-2@2,) () 2 \(-2a,2,)
,054 _a541|F1| € “ +a542|F2| € 0!22'

with

(-2az,) ) 2 \(2a,7,)
ean) 1 g |F, | eln),

2 _ _ (ZAL + 2C11 + H11) Xl — (Al + Cll)F12r13r45 + C11x3 — Ai(rl3r24 +F12F34)F45
11

x2

(C1)

(C2)

(C3)

(C4)

(C5)

(C6)

(C7)

(C8)

(C9)

(C10)

(C11)

(C12)

(C13)

(C14)



_ (281 + 2C12 + HlZ)Xl — (Bl +C12)F12F13F45 +C12X3 + le4

(2 _
&1, X,
a£2) - _ (ZAL + 2C11 + H11)Y1 + A1X5 +C11X6
21 X,
a£2) —_ (281 +2C, + HlZ)Yl _ Bl[YZ + (F21F34 +F13F21)F45] +Cp Xg
22 X,
aéZ) —_ (2A1 + 2C11 + Hll)Zl _C11[Zz + (Flz +F24)F31F45] + A1X7
31 X,
aéZ) - (281 + 2C12 + HlZ)Zl _ClZ[ZZ + (Flz +F24)F31F45] + Bl(ZS —F12F31F45)
32
X

3
o (@rd)[0,] Q. -al) -af -2a) - DO, () - af) -0, 0l - D,y |
431 D3D4—|Qa|2|Qc|2
a0 - (0+ds,)| [0, ©, (a2 -2 -a) - 2a)) ~D&. (a3 -al) -0, -Day |
DD, _|Qa| |QC|

2 * *
0,[|0,f 0,2 -a2 -a? -2a%) - D,Q, (a2 -a?) -0, - D,a |
2 2
D3 D4 _|Qa| |Qc|

(o8P -[o] a2-a2)] Da?

QCQ; Q; (0+ds;)

@ _
8531 =

2 * *
0,[|0,f 0,2 -a2 -a® - 2a?) - D,Q, (a8 -a2) -0,0/af - D& |
2 2
D3 D4 - |Qa| |Qc|

Jeal-[af@@-ad)] pa

2 _
a532 -

Q.Q, Q, (0 +dg)

o _ (0+dg) [Q, (8l —al) +a,” |+ D,al)
41 QCQ;

20 = (0+dy)[a?’ -0 (af) —a}) |- D,a)
” 0.0,

where

*(0 SN()
A& — QC 4g : _Qcngs)

Dl

B - (w+d,,) (Q;pég) -Q o ) +(0+dg,) (QcpZéO) ~Q.p )
=
D,

_(e+d)[[o] 0P -0,[o] al +0,0a8 -0/Da |
D3D4 _|Qa|2 |QC|2

11



(0+d)|[0.] Qa -0, [0 T al +0,D,a8 0Dy |
D3D4 _|Qa|2 |QC|2

12

D; = (0+dg;)(@+d,,) _|Qa|2

D, =(@+dg;)(w+ds,) _|Qc|2

L= D,(o+ d254) . QZQaaé? + D4a;§1) B Q;Qca;l)*'f— D4a:§i) +(w+ dss)(ﬁ_ﬁ)
D,D, - Q.| Q| L Q, Q, | Q. Q

__Dordy) [0l oi0aPeDall, a0 a
D,D, —|Q,[ || L Q, Q, | Q, Q

X, =TI, +T,,+1,,)

Xy =l + Tl + Tl )Ty + 5 + 050
Xy=(C,T +T,0,, =Tl

Xy =l + 060, =Tl )

Xg=[p T+, 0~ =T, 0,0,
Xe=Cpl+0,,0+0, 0, —TL0, T,
Xy =l +0, 0, -1,y =T, )
Y, =, T, +T,,, +T,,0,)I,
Y, =l + T 0y + 05 s+ 1,5 )T

Z, =, +0,, +T,;,) L0,
Z, =, T+, 0, +T,0,, +T, 0,0,
Z, =T, L, + 0,0+, 0, +T, 0.,

Text D: Explicit expressions of W,

W = —x Q (o+ d51)a:g21) +Q (0 + dsl)péﬂ +(@+dy )0+ d51)(a1(121 - aﬁ})
1= Ky ,

D1
D, (D1)
W =« Q,(@+dg) a5+ (@+dy) o) + (0 +dg )@+ dgy )@ —ags) +ag?) (D2)
12 14 D ,
1
W, = s Q (o+ dsz)aﬁ) +Q; (0+ dsz)Péii +(o+dg,)(0+ dsz)(ag)l - aé(uzl)l + a;(12)) D3
u = Ky D ,»  (D3)
2
W = — Q (o+ dsz)azg? +Q; (0 + dsz)ps(i% +(w+dy,)(0+ dsz)(aég ~ aﬁ%) D4
2 = Ky D , (D4)
2

where (i) = aZS’ _az(l?)/ (0+dy).



