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ARTICLE INFO ABSTRACT

Keywords: In this work, we derive bright, dark and singular soliton solutions to quadratic-cubic nonlinear
Modified simple equation method media with perturbation terms being present. We perform the modified simple and the trial
So}itons ) equation algorithms to the considered model. In addition, periodic singular wave solutions will
Trial equation method be constructed by the integration schemes.

Quadratic—cubic media

1. Introduction

The research area of soliton theory is quite important in many physical fields such as fluid dynamics, optical fibers, quantum field
theory, nuclear physics, etc. We observe many works on the construction of soliton solutions for various distinct mathematical
models. For instance, in [1], Patel and Kumar obtain dark and kink soliton solutions for generalized ZK-BBM equation using the
Adomian decomposition method (ADM) and variational iteration method (VIM). Yu et al. [2] build the N-soliton solutions in terms of
the Wronskian of (2+1) dimensional variable-coefficient Nizhnik—-Novikov-Veselov system in an inhomogeneous medium. In [3],
Tebue et al. retrieve kink and bell-shaped soliton solutions of modified Zakharov—Kuznetsov equation via Jacobi elliptical function
method. In [4], Choi and Kim yield dark and bell-shaped soliton solutions of some space-time fractional nonlinear partial differential
equations in the meaning of Jumarie’s Riemann-Liouville fractional derivative operator.

Optical soliton perturbation is the backbone of soliton vibration deployment across trans—continental and trans—oceanic distances
along diverse shapes of waveguides, for instance, optical fibers, PCF and metamaterials and metasurfaces. Several forms of nonlinear
media come with these fibers and couplers. For the nonlinear Schrédinger’s equation (NLSE) [5-14], we are going to consider
quadratic-cubic (QC) media which was first worked in 1994 [8] and afterwards revisited in 2011 [11]. Also, several research results
have gradually flooded in various journals all across. There are a variety of results that have been sequentially reported. The model
equation was addressed using traveling wave hypothesis [7], the method of undetermined coefficients [6] and application of
semi-inverse variational principle [8,9]. The conservation laws were uncovered to the model [14]. This paper will implement two
forms of integration architecture in order to study the perturbed NLSE with QC nonlinearity that includes higher order dispersion
terms. These are modified simple equation and trial equation methodology. Both dark and bright in additional singular soliton will be
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found getting these couple of algorithms.
1.1. The model

The NLSE throughout QC nonlinearity and perturbation terms is presented by
ig, + aqy + (bilgl + b21gP)q = i[aq, = Yqpe = 109G + A(IgP"q), + u(lgP™),q] )

where q(x, t) stands for complex function which means the nonlinear wave profile and the first term corresponds to the temporal
evolution of the pulses. The two nonlinear terms are the coefficients of b; and b, that allude to quadratic media and cubic media
separately when the coefficient of a implies group velocity dispersion. u gives the coefficient of nonlinear dispersion, o points out
fourth order dispersion, A indicates self-steepening term, a corresponds to inter-modal dispersion when y comes from third order
dispersion. Lastly, m comes from the full nonlinearity exponent.

2. Trial equation method

The fundamental stages of this method are enumerated by following steps [15,16]:
Step-1: Let’s consider a nonlinear evolution equation (NLEE)

AG, 4> 9 Qs D> Q> ) = O 2

The Eq. (2) transforms to ordinary differential equation (ODE)
AQ,Q,Q,Q",.)=0 ©)

via wave variable q(x, t) = Q({), { = x — vt, where Q = Q(¢) stands for an dependent function, A is a polynomial in Q and its
subsequent derivatives.
Step-2: In what follows, we consider the following auxiliary first order ODE

M
@P=H@Q =) 6Q

i=0 “@
where 8¢,81,85,...,8y unknown coefficients and will be later fixed. We have a polynomial expression ®(Q) through by plugging Eq. (4)
and necessary derivatives terms into Eq. (3). In Eq. (4), the positive value integer of M which is the order of the finite series can be
attained by balancing rule. One comes up with a overdetermined system which contains unknown parameters under the condition of
setting the coefficients of ®(Q) to be zero. With help of symbolic computation softwares, the constants of v , 8o, 81, ..., 8y are fixed.

Step-3: Reformulate Eq. (4) with an integral representation as

_¢y= dQ
+(=$) f Q) -

Based on the classification of the discriminants of the integrand, one categorizes the roots of H(Q), and evaluate the integral Eq. (5).
Thus, analytical solutions for Eq. (2) are recovered.

2.1. Application to NLSE

In order to solve the governing NLSE by help of the trial equation method, the solution form will be assumed as

q(x, 1) = Qe ©
where the parameter ¢ is known as wave variable and can be represented by
{=x—t @)

while the phase function ¢(x, t) is selected by means of
¢, t) =—1x+ wt + 6 8

where the parameters x, @ and 0 stand for the soliton frequency, soliton wave number and soliton phase respectively.
Plugging (6) into (1), the real and imaginary components give rise to

Q" = (a + 3yx + 6x%0)Q" + (@ + ax? + ax + i3 + 1*6)Q — b;Q2 — b, Q3 + KAQ¥™+1 =, 9
and
(B2 + 4630 + 2ax + v + a)Q' — (4xo + ¥)Q" + ((@m + 1)A + 2mu)Q*"Q’ = 0. (10)

respectively. From the imaginary components, one can conclude the restriction circumstances

ko +y=0 an
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and

@m+ DA +2mu =0 (12)
while the soliton speed emerges as

v = —(3yx? + 4% + 2ax + a). (13)

Case-1:

Balancing Q” between Q> along with m = 1 in Eq. (9), one gets M = 3. Pursuing the methedology of the trial equation approach
gives rise to

Q°® Coeff.:

15067 4+ 2(xA — by) = 0,
Q? Coeff.:
3(a + 3yx + 6x%0)3; + 2b; = 0,
Q Coeff.:
08} — (a + 3yx + 6x%0)8, + @ + ax® + ax + x> + k%o = 0,
Q° Coeff.:
(a + 3yx + 6x%)5; = 0.
Solving these equations by aid of Maple, we have

6,=0, &= _Z—b],
3(a + 3yx + 6x%0)
087 — (a + 3yx + 6x%0)8, + w + ax? + ax + yx® + ko = 0,

_108x°A0? + 108yx*10 + 36ax’Ao + 27y%A + 18ayxk?A + 3a’kA + 100b}
2 3(a + 3yx + 6x%0)? '

Plugging these values into Egs. (4) and (5), one has

dQ
+¢-=[ — :
\/50 +6,Q - — A Q°
3(a + 3yx + 6x°0) 14
Setting &, = 0 in Eq. (14) and integrating with respect to Q, the analytical solution of Eq. (1) are given by
2 5 :
qlx, t) = + 30,(a + 3yx + 61%) sech? —\/—2 (x + By + 430 + 2ax + a)t) | pel(erte+o)
2b, 2
(15)
2 5 .
qlx, t) = +4— 3%2(a + 3yx + 6x70) csch? Q(x + (3yK2 4+ 430 + 2ax + a)t) | pel(Trrte+d)
2b; 2
16)
where Egs. (15) and (16) corresponds to optical bright and optical singular soliton separately whenever
52 > 0.
and
2 NE .
g, 1) = i‘{— 36,(a + 3yx + 6x’0) S\"'2[ 2 G+ (3},1(2 + 4130 + 2ax + a)t)]}el(KercuHS)’
2b, 2
17
2 N .
qlo £) = +4— 38,(a + 3yx + 6x U)VSCZ 2 (x+ (3VK2 + 430 + 2ax + a)t) el (-moc+at+)
2b, 2 (18)

where Egs. (17) and (18) correspond to singular periodic solutions under the condition of
8, < 0.

Case-2: Comparing Q" between Q° along with m = 2 in Eq. (9), one can conclude that the order of the finite series must be
M = 4. Pursuing the methedology of the trial equation approach gives rise to
Q° Coeff.:

2408} + ¥d = 0,
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Q3 Coeff.:
15067 — 4(a + 3yx + 6x%0)8, — 2b, = 0,
Q? Coeff.:
3(a + 3yx + 6x%0)8; + 2b; = 0,
Q Coeff.:
082 — (a + 3yx + 6x%0)8, + w + ax? + ax + yx3 + ko = 0,
Q° Coeff.:
(a + 3yx + 6x%)8; = 0.
Solving these equations by help of Maple, we have

20
6 =0, 53=——2b1 , A=-— pl,
3(a + 3yx + 6x%0) 3xp,

067 — (a + 3yx + 6x%0)8, + w + ax? + ax + yx® + ko = 0,

108x*a2b, + 108yx3cb, + 36ax’ch, + 27y*?b, + 18ayxb, + 3ab, — 100b}
6(216x%03 + 324yx502 + 108ax’c? + 162y%c%c + 108ayx’c + 27y%3 + 18a%%0 + 27ay*® + 9a%yx + a3)’

54 =

p, = 11664x%04b} + 23328yx’0%b7 + 7776ax%3b3 + 17496y*%0%b} + 11664ayx’a?b; + 5832y°°cb} + 1944a*c*o?b;
+ 5832ay?ctobi + 729y*k*b3 — 2160x*c3b2b, + 1944a%yi’ob? + 972ay*3b} — 2160yx3c?b?b, + 216a*k%cb}
+ 486a%y%*b} — 720ax’0?b b, — 540y%%oblb, + 108a’yxb} — 360ayxoblb, + 9a*b; — 60a’cbib, + 1000b;,
p, = 46656x'%0° + 139968yx!'o® + 46656ax'%0° + 174960y *'%c* + 116640ayx’c* + 116640y*°c> + 19440a*k%c*
+ 116640ay%x®c> + 43740y *%c2 + 38880a%yx’c> + 58320ay’c’c? + 8748y°k’c + 4320a°c%c3 + 29160a%y*x’c?

+14580ay*kbc + 729y%® + 6480a’yx°c? + 9720a%y*c + 1458ay’k’® + 540a*k*c? + 3240a%y*c*c + 1215a%y*k*
+ 540a*y1i30 + 540a%y33 + 36a°x%0 + 135a%y*? + 18a’yx + a®.

Plugging these values into Egs. (4) and (5), one has

d
s¢-¢)=f —
\/50 +6,Q° - 3(a+3yx+6k20)Q +8,Q 19
2
Setting 8, = 0 and 6, = bilz in Eq. (19) and integrating with respect to Q, the exact solution of the NLSE are given by
984 (a + 3yx + 6120)
means of
qlx, t) = b it [ | b (x + Byx? + 410 + 2ax + oc)t)i
’ 68,(a + 3yx + 6x%0) | 368,(a + 3yx + 6x%0)?
X ei(—xx+w[+9)’ (20)
b, [ | b2 ]
, )= ——— 41 + coth + (Byx? + 4’0 + 2ax + a)t
90, 1) 684(a + 3yx + 6x%0) \/3654(a + 3yx + 6x%0)? (et Gre 1o+ 2ax + a)i)
X ei(—xx+wr+e)’ (21)
where Egs. (20) and (21) correspond to optical dark and optical singular soliton whenever
64> 0.
3. Modified simple equation method
Let’s consider a NLEE
AG, 4 9 Q> D> G ) = O (22)
The fundamental points of this method are highlighted by following steps [17,18]:
Step-1: We make wave transformation on the dependent variable as follows:
g, )=Q(«), {=x-c (23

1993



A. Biswas et al. Chinese Journal of Physics 56 (2018) 1990-1998

where c is unknown coefficient which must be found. Substituting the Eq. (23) to (22) gives rise to the following ODE:

AQ,Q,Q,Q",.)=0 (24)

where A is a polynomial including Q(¢) and its partial derivatives.
Step-2: Eq. (24) permits the formal solution

& (YO
= S s
(](9) l}; I[M))

where §; are constants whose values must be detected, and y(¢{) will be obtained subsequently.

Step-3: In Eq. (25), the positive value integer of M which is the order of the finite series can be attaine by homogenous balancing
rule.

Step-4: Plugging (25) and all the essential derivatives of the function Q(¢{) into (24), a polynomial which contains y/({)/y({) and
its derivatives is obtained. Setting all of the coefficients which can be achieved by collecting the same terms of 1°(¢), ¥~1(¢), ¥72({),...
.to zero comes up a algebraic equation system. Solving this highly complicated system by assistance of Maple, the &, and y({) are
determined. Thus, analytical solutions for Eq. (22) are recovered.

(25)

3.1. Implementation to NLSE

Case-1:
Balancing of Q”” with Q® along with m = 1 in Eq. (9), one ensure M = 2. As a result, Eq. (25) reduces to

Q) =6 + 5{&) + 5{&) .

() () (26)
Plugging (26) into Eq. (9) and setting the coefficients of 176, ¥=>, P4, =3, ¥=2, %71, ¢° equal to zero give rise to:
Y6 coeff.:
8, (¥)°(:A8; — b, 85 + 1200) = 0, (27)
P> coeff.:
3(W)*((1A8,87 — 8,82b, + 808y — 11208,9") = 0, (28)
P4 coeff.:
— (@) ((=3xA8067 — 3KASES, + 361208, + 38007by + 36£8,b, + 18yxS, + 67by + 6ad,)(Y')?
+6008, )" — 9606, '" — 23406, (9")%) = 0, (29)
=3 coeff.:
(6x18,6,8; + KASE — 12x%08, — 63,818,b5 — 83by — 6yx8, — 28,8,b1 — 2a8) (')
+ (60206, + 30yx8, + 10a8,)" (P')? + 2006,9" (P')? — 1808,3" (3')?
+3008,9' (") — 8808,/ P" — 2408, (¥")° = 0, (30)
=2 coeff.:
(383 8,A% + 38062 2K — 251808, + S20x* + 8,713 + S,ax? + Srax — 3538,b, — 38002b, — bi16E + S,w)(Y')?
+ (18208, + 9yxB; + 3a8) WY’ — (12k%08, + 6yKS, + 2a8,) PP — Sa6,W'Y"" + 208,P'p""
— (126%08, + 6yx8, + 2a8,)(Y")? — 1008,4"P" + 806,9" " + 606,(1" ) = 0, (31)
P71 coeff.:
81((383 Ak + a1 + yi3 + ax? + ax — 2by8y — 382by + W)Y — (6% + 3yx + @)Y + o’ ) =0, (32)
w° coeff.:
8o(w — b1y — 8¢by + ox* + ax? + ax + S¢Ax + yi®) = 0. (33)
Solving this system with help of Maple, one conclude that
S0 = 0. w= _x'08) + yi’S) + ai’s) — %087 85 + axdy — 3yk816F — adls; + 0614’
&,
b = — 6(6x%003 + 3yxd3 + adi — 50512), b, = 183 + 1200
8; 8; 34

and
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" _ 512(b2 — K;L) ’
V== 1200 v

n 612(b2 - M) ’
V= v

From Egs. (35) and (36), we can deduce that

| 82 (b2=12)
Y=+ %klet\‘ ! 12205 ¢
6i (by — xA)
and
|82 (b2-12)
P = 21&]‘1&\‘ Tae 4 ky,
8¢ (by — xd)

Chinese Journal of Physics 56 (2018) 1990-1998

(35)

(36)

(37)

(38)

where k; and k are integration constants. The analytical solution to Eq. (1) are reached by plugging Eq. (37) and (38) into Eq. (26):

|82 (ba—x2)

2., 4.3
+ 1200 k]@iV To00 (x+QGyx“+4x o+ 2ax+a)t)
62(bz— 1)
qx, 1) = {6 —
1200 k ei\‘“‘ 3 (lbzzl);ﬂ) e+ By +4 o+ 2ax+a)t) + k
- 2

f370-

x2) 2,43
1200 kleiV To00 (x+QGyx“+4x o+ 2ax+a)t)

+
\/ 1200 62(b2 — 1)

+ S
T\ by—xA 120 ) 2,3
52(b2i’,<,1)klei\“ T30 (x+Q@yx“+4x c+2ax+a)t) + kz
If we set
8 (by — 1A) o)
k= 1= ———"e*\ " 1200 % k= +1,
1200
then
2 — 2 _ _
qx, t) = 1—5—1 by — 1 sechz[\/M (x + (Byx? + 430 + 2ax + a)t + g’o)]e‘("""'“’[*s),
4\ 120 4800
(39)
2 _ 2 _
qlx, 1) = ia—l bo — 1 cschz[ or b = 1) (x + Gyr? + 4’0 + 2ax + a)t + Q’O)]ei(’“*“’”s),
4 1200 4800
(40)
where Egs. (39) and (40) represent bright and singular soliton solutions respectively under the condition of
o(by — xd) > 0.
2 — 20 _
qlx, t) = i5_1 bo — secz[ _oilb =) (x + Gyx? + 40 + 2ax + a)t + §0)]ei("°‘+“‘+9),
4 120 4800
(41)
52 - 2(by — A _
qlx, t) = =+ by—xd cscz[ _9ibr = 1) (x + Byx? + 40 + 2ax + a)t + §0)]e‘("°‘+“‘+9>,
4 120 4800
(42)
where Egs. (41) and (42) present singular periodic solutions under the condition of
o(by —xd) < 0.
Case-2:
Balancing of Q" with Q® along with m = 2 in Eq. (9), one ensures M = 1. Therefore, Eq. (25) reduces to
)
Q)= +6 ( .
ERNT5) 43)
Plugging (43) into Eq. (9) and equating the coefficients of ~>, ™4, %73, 2, %71, ¢° to zero give rise to:
P~ coeff.:
5, (@)’ (1A} + 240) = 0, (44)
P4 coeff.:
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56, (%)} (kA8o 67y’ — 1209") = 0,
Y3 coeff.:

Chinese Journal of Physics 56 (2018) 1990-1998

— 85, (W) (10148282 + 121%0 + 82by + 6yx + 2a)(W')? — 2009'y" — 300 (¥")?) = 0,

=2 coeff.:

81((10KA8E 8, — 3808,b; — 81b)(W)? + 3(a + 3yx + 6x%0) YY" — 5o'y" — 100y"P") = 0,

71 coeff.:

81((51A8¢ + ox* + y3 + ai® + ax — 2b18y — 3b,82 + W)Y — (a + 3yx + 6x%0)Y" + o’ ) =0,

w° coeff.:

8o(w — bySy — 8¢by + ox* + ax? + ax + 53 Ax + yx3) = 0.

Solving above system with help of Maple, one conclude

that

(12x% + 62b, + 6y + 2a)5t

by =0, KA} +240=0, &= i\/_

5

400

oo 116x%0% + 6x%082by — 8'b} + 116yx°c + 3yxdb, — 28ax?c + adib, + 54y*? + 36ayx + 6a> — 100wc

and

5

2 2
Ip”:i\/—12KU+6lb2+6yK+2azl/

100xc

100
,,, 1210 + 82b, + 6yx + 2a
P =— Y.
100
With b, = 0, we have Eq. (1) reduces to Kerr law nonlinear medium. From Egs. (51) and (52), we can derive
| 12k20+52b2+67k+2a
Y=z |- 2100' kie™\~ o ¢
12x% + &7b, + 6yx + 2a
and
1 ““_ 12K20+512b2+6yk+2a
lp = 0o klei\‘ 100 ¢ + kz,

" 121%0 + 62b, + 6yx + 2a

(45)

(46)

(47)

(48)

49

(50)

(5D

(52)

(53)

(54)

where k; and k are integration constants. The analytical solution to Eq. (1) are reached by plugging Eq. (53) and (54) into Eq. (43):

i =le \/_(127<2c7 + 82by + 6yx + 2a)52
e b= 400

[ 2 2
| 12x“0+3{ba+6yx+2a
+ = 100 k et\j*% (et Gy 4o+ 2ax+a)t)
- 12K25+§12b2+6yx+2a 1
+61 ——
| 12x%0+8{b2+6yK+2
_ 100 klei\“_W (X+(3}'K2+4K30'+20K+O()t) + k2
121%0 + 82by + 6yx + 2a
If we set
[ 2 2
12k%0 + 82b, + 6yx + 2a . | 12 0+0ibatbyet2a
k=- 102 7 DY e*\ 100 G k=41,
100
we get

(12x% + 87b, + 6yx + 2a)8} ¢
400

anh

qlx, t) = i\/—

X el (—1x+wt+ 9)’

(12x% + 87b, + 6yx + 2a)8} .
400

oth

qlx, t) = i\/—

X ei (—1x+wt+6)

\/_ 121%0 + 82b,y + 6yx + 2a

400

\/_ 12x% + 82b, + 6yx + 2a

400

1996

el (—1x+wt+6)

(c + GByx? + 40 + 2ax + )t + )

(c + Gyx? + 4’0 + 2ax + )t + &)

(55)

(56)
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where (55) and (56) represent optical dark and optical singular soliton respectively whenever

o (12x% + 62by + 6y + 2a) < 0

and
[(12¢%0 + 62b, + 6 2a)82 |12k%0 + 82b, + 6 2
qx, t) = + (2% + 8;bs + 6yx + a)ltan\/ K70+ Orbs + Oyx + a(x+(3yk2+4k3a+2ax+oc)t+§o)
400 400
X ei(—;cx+wt+9), (57)
[ 2 2 [ 2
[ (12%2 6;b 6 2a)d 1212 6;7b 6 2 .
q(x, t):i\/( Ko+ ol 4210+ ye + 20)5; cot[\/ Ko+ ‘4;+ re+ a(x+(3y7<2+4;<3a+2ax+a)t+§o)] X el (-rtart)
o o

(58)

where (57) and (58) stand for singular periodic solutions under the condition of

o(121%0 + 82b, + 6yx + 2a) > 0.

4. Dynamical analysis

Now that these soliton solutions are explicitly available in presence of perturbation terms with full nonlinearity, for the model, the
groundwork for future activities has been laid. These soliton solutions will be of great asset for a variety of research activities in the
field of fiber optics research. The soliton solutions will help to study soliton perturbation theory with additional perturbation terms
that are of non-Hamiltonian as well as non-local type. These quasi-monochromatic perturbation terms will lead to the effect of soliton
cooling that is a very important phenomena in optical fibers and PCF. Later quasi-stationary solitons will also be retrieved for the
model with additional perturbation terms. The quasi-particle theory will also be developed to suppress intra-channel collision which
is a major hindrance in telecommunication system. Then for inter-channel communications, collision-induced timing jitter will be
developed and studied along with BER for its communication dynamics. The results will be extended to birefringent fibers and
eventually it will model parallel communication with DWDM topology. The basic soliton solutions of this paper will serve as a
platform for such developments.

In addition, several additional aspects can be easily ventured upon. These include formulation of soliton parameter dynamics
using the variational principle after constructing the Lagrangian. These will be studied in polarization preserving fibers, birefringent
fibers as well as with DWDM topology. The parameter dynamics will again form the basic ingredients for further advances such as
studying the dynamics of soliton fission as well as developing supercontinuum generation. One other issue is the study of stochastic
perturbation terms in addition to deterministic ones. In this context, soliton perturbation theory can be implemented to address the
corresponding Langevin equation and compute the mean free velocity of the soliton in presence of such perturbations. One final issue
is the consideration of the model with fractional temporal evolution. This will aid us in addressing the Internet bottleneck problem.
Thus Internet traffic flow can be controlled and regulated smoothly at an Internet hub. This will allow a global flow of pulses without
any traffic disruption. The basic soliton solutions presented in the paper, are thus encouraging, to address dynamical applications in
fiber optic industry.

5. Conclusions

This paper performed two distinct integration algorithms to solve and yield dark, bright with singular soliton solutions for the
NLSE that appeared with perturbation terms as well as QC nonlinearity. In addition, periodic singular waves naturally emerged from
the reversed restriction requirements on the constants. Comparing our work with the works done on the NLSE with QC nonlinearity
[8-14], we conclude some important aspects. Firstly, the perturbation terms known as inter-modal dispersion, self-steepening,
higher-order dispersion, third order dispersion, fourth order dispersion throughout the full nonlinearity effect m are considered to
keep the model from a generalized standpoint to the optical soliton propagation dynamics. However, the works of Aslan and Co-
workers [5,9,11,12,14] consider only unperturbed NLSE. Secondly, only the full nonlinearity parameter m = 1 is investigated in
[6,7,13] which includes special case of Eq. (1) while different values of the full nonlinearity parameter namely bothm = 1 and m = 2
are employed in order to reveal soliton solutions by means of modifed simple equation method and trial equation method. This is an
interesting conclusion as these integration schemes indicates. Thirdly, only bright soliton type solution is imparted in [8] whilst
bright, dark and singular solitons in additional to singular periodic solutions are yielded in this paper. Also, all of the obtained
solutions by these effective methods are new comparing with the obtained solutions in [8]. Lastly, Eq. (1) is an extended model of the
models in [5-7,9,11-14] and its (15-18) and (39-42) type solutions are new and to best of our knowledge is reported firstly in this
paper.

These results will serve as a steppping stone to additional investigation on this model. We emphasize that the obtained results
shall allow in order to give the formulation for the Langevin model which will yield the mean free velocity of these solitons.
Subsequently, stochastic perturbation terms shall be taken into consideration. Additional integration techniques such as Lie group
analysis, collective variables approach, Adomian decomposition scheme will shed more light on this model. Such research activities
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are under way and their results will be revealed with time.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cjph.2018.09.009.
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