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A B S T R A C T

We investigate the existence and stability properties of nonlinearly chirped solitary waves on a continuous-wave
background in nonlinear metamaterials with higher-order effects such as pseudo-quintic nonlinearity and self-
steepening effect. Novel classes of chirped gray solitary pulses (dark pulses with nonzero minimum intensity)
are derived by employing the traveling-wave method. The conditions for the formation of these localized pulses
as well as the nonlinear chirp associated to them are presented. The stability of the obtained structures is also
demonstrated numerically under finite initial perturbations. The results show that the envelope pulses obtained
here represent new types of extremely robust nonlinear chirped structures in highly nonlinear metamaterials.

1. Introduction

The optical soliton represents a nonlinear pulse or wave packet
which travels without changing shape over extremely large distances.
Such a pulse can occur in single-mode optical fibers when the pulse
broadening of the group-velocity dispersion (GVD) and the compressing
of the Kerr nonlinearity are in balance [1]. After the first theoretical
prediction [2,3] and the experimental demonstration [4] of the temporal
soliton in a monomode optical fiber, interest has been aroused in the
studies of such pulses over the past decades since it may be applied as
bit rates in the next generation of optical communication systems [5–8].

Normally in nonlinear optical fibers, the propagation of soliton
pulses is governed by the nonlinear Schrödinger (NLS) equation which
is integrable by the inverse scattering method [9]. Depending on
the relative signs of linear group-velocity dispersion and nonlinearity
induced self-phase modulation, such a model admits two distinct types
of localized solutions, called bright and dark soliton solutions [10,11].
However, when the spectral width of the pulses becomes comparable
with the carrier frequency, additional higher-order effects such as the
self-steepening otherwise called the Kerr dispersion, the Raman stim-
ulated scattering (soliton self-frequency shift), and third-order linear
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dispersion should be taken into account [12]. Due to these additional
effects, the governing higher-order NLS equation can lead to a soliton
behavior applicable to a subpicosecond or femtosecond regime. Prop-
agations of such envelope solitons in optical fibers are of particular
interest because of their advantages in long distance, high bit rate, and
faster switching [13,14].

Recent advances in the field of solitons have shown that many
new localized structures can be formed in nonlinear materials. For
instance, it has been demonstrated that the exact balance between
dispersion/diffraction and nonlinearity can induce solitons character-
ized by fascinating shape-preserving wave phenomena such as Gaussian
soliton clusters, multipole soliton clusters, nested soliton clusters [15],
and light bullets (spatiotemporal solitons) [16]. Peregrine and breather
structures have been also reported in a medium with partially nonlo-
cal inhomogeneous nonlinearities [17]. Additionally, Gaussian spatial
solitons have been interestingly obtained in quintic–septimal nonlinear
materials under PT-symmetric potentials [18].

In recent years, the femtosecond gray solitary waves or solitons
(which are dark pulses with nonzero minimum intensity) have been
the objects of extensive theoretical and experimental studies [19–23].
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Unlike the bright soliton, where the center point is a maximum, the
center point for the dark and gray solitons is located at the minimum
in amplitude [21]. Until now, gray pulses propagation in nonlinear
metamaterials has been analyzed only for the case of chirp-free and
linearly chirped solitary waves or solitons (see, e.g., Refs. [22,23]). Par-
ticularly interesting are the so-called chirped pulses which are useful in
the design of optical devices such as fiber-optic amplifiers, optical pulse
compressors and solitary wave based communication links [24,25]. To
our knowledge, the dynamics and stability of nonlinearly chirped gray
solitons in nonlinear metamaterials have not been reported yet.

In this paper, we investigate for the first time to our knowledge the
propagation and stability properties of nonlinearly chirped gray solitary
pulses in nonlinear metamaterials exhibiting higher-order effects such
as pseudo-quintic nonlinearity and self-steepening effect. Novel classes
of chirped gray solitary pulses are derived using the traveling-wave
method. It is remarked that the self-steepening effect could make the
envelope pulses chirped, and the nonlinear chirp associated with these
pulses has a nontrivial form which includes two intensity dependent
chirping terms apart from the linear contribution.

The article is organized as follows. In Section 2, the theoretical model
describing the propagation of ultrashort pulses in metamaterials with
non-Kerr nonlinearity is presented. Particular cases of the governing
equation which describe the wave dynamics in a variety of physical
systems are also discussed. In Section 3, we present two new types of
nonlinearly chirped gray solitary waves as well as the nonlinear chirp
associated with these optical pulses. Section 4 is devoted to the stability
analysis of such privileged exact solutions under some perturbations. In
Section 5, we present the three basic conserved quantities for the model.
Our findings are summarized in Section 6.

2. The model

The generalized NLS equation describing the evolution of femtosec-
ond optical field 𝜓 in nonlinear metamaterials can be written as [23,26]

𝑖
𝜕𝜓
𝜕𝑧

+
𝑘2
2
𝜕2𝜓
𝜕𝑡2

+ 𝑝3|𝜓|
2𝜓 − 𝑝5|𝜓|

4𝜓 − 𝑖𝑠1
𝜕
𝜕𝑡

(

|𝜓|2𝜓
)

= 0, (1)

where 𝑡 = 𝑐𝑇 ∕𝜆𝑝 and 𝑧 = 𝑍∕𝜆𝑝 are the respective normalized time
and propagation distance, with 𝜆𝑝 is the plasma wavelength. Also
𝑘2 stands for the GVD coefficient, 𝑠1 represents the self-steepening
coefficient, while 𝑝3 and 𝑝5 represent cubic and pseudo-quintic nonlinear
coefficients respectively.

This equation contains several particular cases such as the standard
NLS equation (𝑝5 = 𝑠1 = 0) [27], the modified NLS equation (𝑝5 =
0) [28], the Kaup–Newell equation (𝑝3 = 𝑝5 = 0) [29], the cubic–
quintic NLS equation (𝑠1 = 0) [30], and the pure quintic NLS equation
(𝑝3 = 𝑠1 = 0) [31]. Each particular case is important to describe
nonlinear wave dynamics in specific physical systems. In a recent
work, exact quasi-soliton solutions for this equation have been derived
under the condition of vanishing self-steepening term (𝑠1 = 0) [23].
Moreover, the modulational instability and localization of an ultrashort
electromagnetic pulse that is governed by the generalized NLS equation
above have been examined by Marklund et al. [26]. Here we concentrate
on discussing it with nonvanishing boundary conditions by using the
traveling-wave method.

3. Exact chirped gray soliton solutions

The richness of an optical medium that is actively influenced by
ultrashort pulses propagation is often measured by the variety of
structures that it can support. Of particular interest are exact and new-
type solutions that describe the evolution of nonlinearly chirped solitons
on a cw background. In order to obtain such structures we proceed as
in [32–34] and express the complex envelope function 𝜓(𝑧, 𝑡) as

𝜓(𝑧, 𝑡) = 𝜌 (𝜉) 𝑒𝑖[𝜒(𝜉)−𝜅𝑧], (2)

where 𝜉 = 𝑡 − 𝑢𝑧 is the traveling coordinate, 𝜌 (𝜉) and 𝜒 (𝜉) are real
functions of 𝜉, and 𝜅 is the wave number constant (𝜅 > 0). Also, 𝑢 = 1∕v,
with v is the group velocity of the wave packet. The corresponding
chirping is given by 𝛿𝜔(𝑧, 𝑡) = − 𝜕

𝜕𝑡

[

𝜒 (𝜉) − 𝜅𝑧
]

= −𝜒 ′ (𝜉) . Substituting
the representation (2) into Eq. (1) and separating real and imaginary
parts of the resulting equation, one derives the coupled equations in 𝜌
and 𝜒 ,

𝜅𝜌 + 𝑢𝜒 ′𝜌 +
𝑘2
2

(

𝜌′′ − 𝜒 ′2𝜌
)

+ 𝑝3𝜌3 − 𝑝5𝜌5 + 𝑠1𝜒 ′𝜌3 = 0, (3)

and

− 𝑢𝜌′ +
𝑘2
2

(

𝜌𝜒 ′′ + 2𝜒 ′𝜌′
)

− 3𝑠1𝜌2𝜌′ = 0, (4)

where the prime indicates differentiation with respect to 𝜉.
Multiplying both sides of (4) by 𝜌 and integrating leads to:

𝜒 ′ =
3𝑠1
2𝑘2

𝜌2 + 𝐴
𝑘2𝜌2

+ 𝑢
𝑘2
, (5)

where 𝐴 is an integration constant to be determined latter. The corre-
sponding chirping takes the form:

𝛿𝜔 (𝑧, 𝑡) = −
3𝑠1
2𝑘2

𝜌2 − 𝐴
𝑘2𝜌2

− 𝑢
𝑘2
. (6)

Thus, we see from the result above that the chirping has a nontrivial
structure which contains two intensity dependent contributions apart
from the linear term (evidently 𝐼 = 𝜌2 being the intensity). We further
observe that the first nonlinear contribution is directly proportional to
the intensity of the wave and depends on the self-steepening parameter
while the second one is inversely proportional to the intensity.

Further substitution of the expression (5) into (3) gives the following
evolution equation:

𝜌′′ +
2𝜅𝑘2 + 𝑢2 − 𝑠1𝐴

𝑘22
𝜌 +

2
(

𝑝3𝑘2 + 𝑠1𝑢
)

𝑘22
𝜌3

+
3𝑠21 − 8𝑝5𝑘2

4𝑘22
𝜌5 − 𝐴2

𝑘22𝜌
3
= 0, (7)

which describes the dynamics of the wave amplitude in the nonlinear
metamaterial. Multiplying (7) by 𝜌′ and integrating once with respect
to 𝜉, one obtains
(

𝜌′
)2 +

2𝜅𝑘2 + 𝑢2 − 𝑠1𝐴
𝑘22

𝜌2 +
𝑝3𝑘2 + 𝑠1𝑢

𝑘22
𝜌4

+
3𝑠21 − 8𝑝5𝑘2

12𝑘22
𝜌6 + 𝐴2

𝑘22𝜌
2
+ 2𝐵 = 0, (8)

where 𝐵 is the second integration constant.
More physical insight into the competition between GVD, cubic–

quintic nonlinearities, and self-steepening can be obtained by an effec-
tive particle analogy. Applying the transformation 𝐹 = 𝜌2 to Eq. (8), we
easily obtain the potential-well description:
(

𝑑𝐹
𝑑𝜉

)2
+ 𝑉 (𝐹 ) = 0, (9a)

where the potential 𝑉 is

𝑉 (𝐹 ) = 𝛿 + 𝛼𝐹 + 𝛽𝐹 2 + 𝛾𝐹 3 + 𝜈𝐹 4, (9b)

with

𝛿 = 4𝐴2

𝑘22
, 𝛼 = 8𝐵, 𝛽 =

4
(

2𝜅𝑘2 + 𝑢2 − 𝑠1𝐴
)

𝑘22
,

𝛾 =
4
(

𝑝3𝑘2 + 𝑠1𝑢
)

𝑘22
, 𝜈 =

3𝑠21 − 8𝑝5𝑘2
3𝑘22

. (9c)

Eq. (9a) resembles the equation describing the dynamics of a particle in
a potential well 𝑉 (𝐹 ). Below, we present novel chirped solitary wave
solutions on a cw background of Eq. (1) based on solving this equation.
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Fig. 1. (a) Evolution of intensity wave profile of the gray solitary wave as computed from (14) of Eq. (1) and (b) profile of chirping given by Eq. (15). Here we have
used the parameters values 𝑘2 = −0.7954, 𝑝3 = −1.2566 × 10−10, 𝑝5 = −2.095 × 10−21, 𝑠1 = 0.6666 × 10−10, 𝜆 = 2 × 1010, 𝜎 = 1010, 𝜂 = 1 and 𝑢 = −2.4484. The solitary
wave intensity is normalized by |𝜓(𝑧, 𝑡)|2∕𝜎.

The nonlinear chirp associated with each of these optical pulses as
well as the conditions for their existence are also determined. Here we
present the exact chirped gray solitary wave solutions of Eq. (1) in two
cases.

Case-1. The first type of exact solitary wave solution we obtained here
for Eq. (9) takes the form

𝐹 (𝜉) = 𝜆 − 𝜎 sech2 (𝜂𝜉) , (10)

for the special physical condition:

𝑠21 =
8𝑘2𝑝5
3

, (11)

between the self-steepening parameter, GVD and pseudo-quintic non-
linearity. For this case, the relationship between different parameters
of the nonlinear equation for the squared wave amplitude (9a) and the
parameters of the solution satisfy

𝛿 =
4𝜆2𝜂2 (𝜆 − 𝜎)

𝜎
, 𝛼 =

4𝜆𝜂2 (2𝜎 − 3𝜆)
𝜎

,

𝛽 =
4𝜂2 (3𝜆 − 𝜎)

𝜎
, 𝛾 = −

4𝜂2

𝜎
. (12)

Equating the parameters in (9) and (12), we get the expressions of the
inverse group velocity 𝑢 and wave number 𝜅:

𝑢 = −
𝜂2𝑘22 + 𝑝3𝑘2𝜎

𝜎𝑠1
, (13a)

𝜅 =
𝜂2𝑘22 (3𝜆 − 𝜎) +

(

𝑠1𝐴 − 𝑢2
)

𝜎
2𝑘2𝜎

, (13b)

together with the expressions of 𝐴 and 𝐵:

𝐴2 =
𝑘22𝜆

2𝜂2 (𝜆 − 𝜎)
𝜎

, (13c)

𝐵 =
𝜆𝜂2 (2𝜎 − 3𝜆)

2𝜎
, (13d)

From the relations (13c) and (13d), we notice that the integration
constants 𝐴 and 𝐵 can be fixed easily with the parameters of the pulse,
and consequently the physical meaning of them is very clear. One can
also see that the constant 𝐴 in (13c) takes a real value for 𝜆 > 𝜎 if
considering 𝜎 > 0.

Thus, the exact chirped solitary pulse solution on a cw background
to the generalized NLS equation (1) is given by

𝜓(𝑧, 𝑡) =
√

𝜆 − 𝜎 sech2 [𝜂 (𝑡 − 𝑢𝑧)]𝑒𝑖[𝜒(𝜉)−𝜅𝑧] (14)

with 𝜆 > 𝜎. Here the parameter 𝜆 decides the strength of the background,
in which this solution propagates in the nonlinear metamaterial. It is

worth observing that this family of solutions has three free parameters
𝜆, 𝜎 and 𝜂 if the metamaterial parameter 𝑘2, 𝑝3, and 𝑝5 are known.
Of course the self-steepening parameter 𝑠1 will be determined using
the existence condition (11). The latter indicates that the GVD and
pseudo-quintic nonlinearity must satisfy the condition 𝑘2𝑝5 > 0, which
implies that the obtained solitary wave can exist in abnormal (normal)
dispersion for self-defocusing (-focusing) nonlinearity [see Eq. (11)].
Naturally, the solution (14) reduces to a dark-type soliton in the limit
𝜆 = 𝜎.

The corresponding chirping associated with this nonlinearly chirped
solitary wave can be obtained readily as

𝛿𝜔 (𝑧, 𝑡) = −
3𝑠1
2𝑘2

(

𝜆 − 𝜎 sech2 (𝜂𝜉)
)

− 𝐴
𝑘2

(

𝜆 − 𝜎 sech2 (𝜂𝜉)
)
− 𝑢
𝑘2
. (15)

Fig. 1(a) shows the evolution of the intensity wave profile of the
preceding chirped solitary wave solution of Eq. (1) for the parameters
values [23]: 𝑘2 = −0.7954, 𝑝3 = −1.2566×10−10, and 𝑝5 = −2.095×10−21.
To satisfy the parametric condition (11), we set 𝑠1 = 0.6666×10−10. Here
the other solitary wave parameters are taken as 𝜆 = 2×1010, 𝜎 = 1010 and
𝜂 = 1. As concerns the pulse inverse group velocity 𝑢, it can be obtained
from Eq. (13a) as 𝑢 = −2.4484. As one can see from Fig. 1(a), this solution
represents a chirped gray pulse with a nonzero dip originating from the
higher-order nonlinear effects. The chirping profile for this gray-type
solution is shown in Fig. 1(b) (for 𝑧 = 0). One can see that it takes the
shape of W and saturates at the same finite value as 𝑡 → ±∞.

It is interesting to note that for the special case of 𝐴 = 𝐵 = 0, we
have 𝜆 = 0 and our solution (14) simply reduces to the waveform:

𝜓(𝑧, 𝑡) = 𝑎𝑒𝑖𝛤 tanh[𝜂(𝑡−𝑢𝑧)]

× sech [𝜂 (𝑡 − 𝑢𝑧)] 𝑒𝑖[𝐾𝑧−𝛺𝑡+𝜑] (16)

which is exactly the solitary wave solution found in Ref. [35]. Here 𝜑 is
a constant phase while 𝑎 =

√

−𝜎, 𝜂2 = − 2𝜅𝑘2+𝑢2

𝑘22
, 𝛤 = 3𝑠1𝑎2

2𝑘2𝜂
, 𝐾 = − 𝑢2

𝑘2
−𝜅,

𝛺 = − 𝑢
𝑘2

with 𝜎 = −
𝜂2𝑘22

𝑝3𝑘2+𝑠1𝑢
.

Case-2. It is of further interest to search for other types of exact
chirped localized solutions because closed form solutions are helpful for
recognizing physical phenomena described by the model. The second
type of exact solitary wave solution we find here for Eq. (9) is of the
form

𝐹 (𝜉) = 𝜆2

1 + 𝑟 sech2 (𝜇𝜉)
, (17)
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Fig. 2. (a) Evolution of intensity wave profile of the gray solitary wave as computed from (20) of Eq. (1) and (b) profile of chirping given by Eq. (21). Here we have
used the parameters values 𝑘2 = −0.7954, 𝑝3 = −1.2566 × 10−10, 𝑝5 = −2.095 × 10−21, 𝑠1 = 4.8195 × 10−14, 𝑟 = 0.4 and 𝑢 = 2. The solitary wave intensity is normalized
by |𝜓(𝑧, 𝑡)|2∕|𝜆|2.

Fig. 3. Comparison of our analytical results (a) given by Eq. (14) and (b) Eq. (20)
at 𝑧 = 20 (solid line) with the numerical simulations (circle) and the initial
profile at 𝑧 = 0 (dotted line).

where

𝜇2 = −
𝛾2𝑟 (𝑟 + 1)
4𝜈(2𝑟 + 3)2

, (18a)

𝜆2 = −
𝛾 (𝑟 + 1)
𝜈(2𝑟 + 3)

, (18b)

and

𝛼 =
𝛾3(𝑟 + 1)2

𝜈2(2𝑟 + 3)3
, 𝛽 =

𝛾2 (𝑟 + 1) (𝑟 + 3)
𝜈(2𝑟 + 3)2

, 𝛿 = 0. (18c)

Equating (9c) and (18c), one finds that the integration constant 𝐴
vanishes while the constant 𝐵 and the wave number 𝜅 are given, in
turn, by

𝐵 =
𝛾3(𝑟 + 1)2

8𝜈2(2𝑟 + 3)3
, (19a)

and

𝜅 =
𝑘22𝛾

2 (𝑟 + 1) (𝑟 + 3) − 4𝑢2𝜈(2𝑟 + 3)2

8𝑘2𝜈(2𝑟 + 3)2
. (19b)

With these results, we find that the exact chirped solitary wave solution
of the generalized NLS equation (1) can be written as

𝜓(𝑧, 𝑡) = 𝜆
√

1 + 𝑟 sech2 (𝜇𝜉)
𝑒𝑖[𝜒(𝜉)−𝜅𝑧]. (20)

with the primary requirement 𝑟 > 0. Because the pulse width parameter
𝜇 needs to be real for the existence of the chirped solution (20), one must
require 𝜈 < 0 in Eq. (18a), which implies 𝑠21 < 8𝑝5𝑘2∕3. An interesting
observation is that the solution (20) is located on a nonzero background
with an intensity value |𝜓|2 = 𝜆2∕ (1 + 𝑟) at the center of the pulse,
and |𝜓|2 = 𝜆2 when 𝜉 → ±∞. It is worth noting here that this solution
may represent a chirped bright-type solitary wave solution on a constant
background for −1 < 𝑟 < 0.

Then, the corresponding chirping takes the form

𝛿𝜔 (𝑧, 𝑡) = −
3𝑠1𝜆2

2𝑘2
(

1 + 𝑟 sech2 (𝜇𝜉)
)
− 𝑢
𝑘2
. (21)

The evolution of the intensity wave profile of the gray solitary wave
solution (20) obtained in this case for Eq. (1) and chirping profile (for
𝑧 = 0) are shown in Fig. 2(a) and 2(b), respectively. The parameters used
here are [23]: 𝑘2 = −0.7954, 𝑝3 = −1.2566×10−10, and 𝑝5 = −2.095×10−21.
The self-steepening parameter is taken as 𝑠1 = 4.8195 × 10−14. The other
parameters are taken as 𝑟 = 0.4 and 𝑢 = 2. It is clear from Fig. 2(a) that
this nonlinearly chirped solution describes a gray pulse with a nonzero
dip. Chirping for this gray-type solution (depicted in Fig. 2(b)) has a
minimum at the center of the pulse and saturates at the same finite
value as 𝑡→ ±∞.

Comparing the analytical results (14) and (20) with numerical
solutions in Figs. 1 and 2, we infer that these exact chirped gray solitary
waves can exist in nonlinear metamaterials, and that the higher-order
effects not only play a significant role for the formation of gray solitary
pulses but also dominate their propagations in metamaterials.

In what follows, for the completeness of the investigation, we solve
the underlying Eq. (1) numerically by applying the split-step Fourier
method [36]. Here, the exact solitary wave solutions (14) and (20) at
𝑧 = 0 are chosen as initial pulses. Fig. 3(a) and (b), respectively, show
a comparison of the analytical results (14) and (20) with the numerical
simulations at 𝑧 = 20. The choice of metamaterial and pulse parameters
are the same as those in Figs. 1(a) and 2(a), respectively. It is clear that
the numerical results agree very well with the analytical solutions as
illustrated in Fig. 3. Note that the profiles or shapes of pulses are well
preserved after propagating the distance simulated in the metamaterial.
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Fig. 4. Evolution of intensity wave profile of the gray solitary wave as computed from (14) (a) under the perturbation of white noise with the same parameters as
in Fig. 1(a); (b) evolution of an initial pulse whose amplitude is 10% smaller than the theoretical prediction.

4. Stability analysis

An important problem is the stability of the new nonlinearly chirped
pulses presented above against finite perturbations. It is worth noting
that only stable (or weakly unstable) solitary waves can be observed
experimentally [37,38]. In general, bright soliton solutions to the one-
dimensional cubic–quintic NLS equation are known to be remarkably
stable [39]. Moreover, bright, dark and gray nonautonomous soliton
solutions for the cubic–quintic NLS equation with distributed coeffi-
cients are also found to be stable under some initial perturbation while
evolving in distance [30]. Since the model under consideration (1)
includes such cubic–quintic nonlinearities, as well as the self-steepening
term, it is reasonable to conjecture that the chirped solitary wave solu-
tions (14) and (20) should be stable. However, in order to confirm the
stability of these localized structures, one have to study the numerical
evolution of the initial optical pulses under some perturbations (e.g., the
perturbation of the amplitude, random noises, and the slight violation
of the parametric conditions).

In the following, we demonstrate the stability of solutions with
respect to finite perturbations by performing various types of numerical
experiments. Here we take the nonlinearly chirped pulse solution (14) as
an example and perform two types of direct numerical simulations with
initial white noise and amplitude perturbation to study the stability of
this solution compared to Fig. 1(a). First, we add 10% white noise in
the initial pulse [40]. Second, we perturb the amplitude (10%) in the
initial distribution [30]. The numerical results are shown in Fig. 4(a) in
which the solutions are affected by the random noise and Fig. 4(b) in
which the initial amplitude is perturbed. The results reveal that finite
initial perturbations (10%), such as amplitude and white noise, could
not influence the main character of the solution.

5. Conservation laws

The last topic that this paper will touch base on is the conservation
laws of the model. Without a discussion on conserved quantities, no
study on optical solitons is complete. Therefore, to keep the paper
rounded, it is imperative to discuss the conserved quantities for the
model. The three immediate conservations laws for the governing model
(1) are power (𝑃 ), linear momentum (𝑀) and Hamiltonian (𝐻) and they
are respectively given by:

𝑃 = ∫

∞

∞
|𝜓|2𝑑𝑡, (22)

𝑀 = 𝑖𝑘2 ∫

∞

∞

(

𝜓∗𝜓𝑡 − 𝜓𝜓∗
𝑡
)

𝑑𝑡, (23)

and

𝐻 = ∫

∞

∞

(

3𝑘2||𝜓𝑡||
2 − 3𝑝3|𝜓|

4 + 2𝑝5|𝜓|
6
)

𝑑𝑡. (24)

While there are presumably additional conservation laws for this model,
these preliminary ones are listed. These laws can be used to study
soliton perturbation theory in presence of several perturbation terms
to recover adiabatic dynamics of soliton parameters. These results will
be eventually useful to address additional features such as collision-
induced timing jitter, four-wave mixing and other such features.

6. Conclusions

In this work, we have proved that nonlinearly chirped solitary waves
on a continuous-wave background can exist in a nonlinear metamate-
rial exhibiting higher-order effects such as pseudo-quintic nonlinearity
and self-steepening effect. Using the traveling-wave method, we have
presented two types of exact chirped gray solitary-wave solutions
and the corresponding formation conditions in metamaterials. It is
found that these chirped pulses possess a nontrivial phase structure
which has two intensity dependent chirping terms, apart from the
linear contribution. The stability of the solitary waves has been also
demonstrated numerically with respect to finite perturbations of the
additive white noise and perturbation of the amplitude. The results
showed that the solutions we obtained are still stable under finite initial
perturbations, such as amplitude and white noise. Due to their robust
propagating nature, the newly found chirped gray solitary waves should
be observed experimentally in metamaterials having a non-Kerr-type
nonlinear response.
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