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Abstract Soliton interactions occur when two soli-
tons are close enough. In general, periodic oscilla-
tions can be presented during soliton interactions. The
periodic oscillations will lead to the soliton distortion,
which is necessary to carry out the effective control.
In this paper, interactions between periodic solitons
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with controllable parameters are investigated analyt-
ically. One- and two-soliton solutions for the nonlinear
Schrödinger equation are derived by using the Hirota’s
bilinear method. According to analytic solutions, the
influences of each parameter on period interactions
between solitons are discussed, and the method of how
to control the cycle of interactions is suggested. Results
in this paper can be used for the theoretical guidance of
how tomake the soliton transmissionmore efficient and
more fidelity, and are of great significance for optical
fiber communications.

Keywords Optical solitons · Soliton interactions ·
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1 Introduction

In mathematical physics, solitons are a class of solu-
tions to nonlinear evolution equations that describe
weakly nonlinear dispersions of various physical sys-
tems [1–18]. Since the soliton was discovered, the
researchonoptical solitons has alwaysbeenvery active,
and great progress has been made both theoretically
and experimentally [19–29]. Solitons have such advan-
tages as constant waveform, constant speed, good con-
fidentiality and high fidelity; therefore, they are used
in the field of optical communications [30]. Both the
fidelity and speed of the soliton transmission are indi-
cators of the enhanced quality of communication sys-
tems. Higher quality and faster speed of information
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transmission are needed. As we all know, the nonlinear
Schrödinger equation (NLSE)

i
∂u

∂t
+ 2|q|2q + ∂q

∂x2
= 0 (1)

can be used to describe the transmission of picosecond
optical pulses in optical fibers [31–35]. In nonlinear
optics, solitons are divided into two categories: tem-
poral solitons and spatial solitons. They are derived
from the optical Kerr effect which is a phenomenon
that the refractive index of the material alters caused by
the change of light intensity nonlinearly, and such phe-
nomenon results in the self-focusing or self-defocusing
of optical pulses in the space.

However, for the transmission of sub-picosecond
and femtosecondpulseswhich has a better performance
on the transmitting information, higher-order effects
should be taken into consideration. The higher-order
integrable NLS hierarchy can be presented as [36–40]:

iqx + α2(qtt + 2q|q|2) − iα3(qttt + 6qt |q|2)
+α4(qtttt + 6q∗q2t + 4q|qt |2
+ 8|q|2qtt+2q2q∗

t t+6|q|4q) − iα5(qtttt t + 10|q|2qttt
+ 30|q|4qt + 10qqtq

∗
t t + 10qq∗

t qtt + 10q2t q
∗
t

+ 20q∗qtqtt ) + · · · = 0, (2)

where q(x, t) denotes the normalized complex ampli-
tude of the optical pulse envelope and ∗ represents
the conjugation. αl(l = 2, 3, 4 · · · ) are real constant
parameters. x and t are the propagation variable and
transverse variable, respectively. Thebreather solutions
of first-order (αm = 0,m = 2, 3, 4 · · · ) and second-
order (αm = 0,m = 3, 4 · · · ) NLS equations have
been solved by the Darboux transformation (DT) [36].
However, to our knowledge, the analytic solution of
third-order NLS equations has not been solved. In this
paper, one- and two-soliton solutions of third-order
NLS equations (αm = 0,m = 4, 5 · · · ) are given as

iqx + α2(qtt + 2q|q|2) − iα3(qttt + 6qt |q|2) = 0.

(3)

Among the variety of methods of finding analytic
soliton solutions, Hirota’s bilinear method is an impor-
tant and direct method which is put forth creatively.
This method takes the bilinear derivative as a tool and
is only related to the equation to be solved. Besides, it
does not depend on the spectral problem of the equa-
tion or the Lax pair. Thus, the Hirota’s bilinear method
is a concise, intuitive and distinctive method.

As a nonlinear phenomenon, the interaction between
optical solitons is a natural phenomenon. When mul-
tiple optical solitons are transmitted through optical
fibers, it is clear that they need to be separated from
each other in order to ensure the integrity and accu-
racy of the information [41]. So each optical soliton
is required to enter the fiber at a smaller interval, but
it will cause interaction between adjacent optical soli-
tons and decrease the bandwidth of optical communica-
tion systems. Those cases will weaken the communica-
tion capability of optical soliton transmission systems
[42,43]. Therefore, studying the interaction between
optical solitons basedon theNLSE is thekey to improve
the quality and capacity of long-distance communica-
tion systems. Based on Eq. (3), interactions between
periodic solitons with controllable parameters will be
studied in this paper.

The structure of this paper is indicated as below.
In Sect. 2, analytic one- and two-soliton solutions for
Eq. (3) will be solved by Hirota’s bilinear method. In
Sect. 3, the influences of various parameters on soliton
interactions and their period are discussed. Finally, in
Sect. 4, our conclusions are given.

2 Analytic one- and two-soliton solutions for
Eq. (3)

Analytic solutions for Eq. (3) are obtained by the
Hirota’s bilinear method through the introduction of
dependent variable transformation [44,45]

q = h(x, t)

f (x, t)
, (4)

where h(x, t) is a complex differentiable function and
f (x, t) is a real one. With bilinear operators, bilinear
forms are obtained after symbolic manipulations:

(i Dx + α2D
2
t − α3D

3
t )h · f = 0, (5)

D2
t f · f − 2|h|2 = 0. (6)

The Hirota’s bilinear operators Dn
x and Dn

x are
defined by [46,47]

Dl
x D

n
t h(x, t) · f (x, t)

=
( ∂

∂x
− ∂

∂x ′
)l( ∂

∂t
− ∂

∂t ′
)n

h(x, t) f (x ′, t ′)
∣∣∣∣
x ′=x,t ′=t

.

(7)
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Equation (3) can be solved by the following for-
mal parameter power series expansion for h(x, t) and
f (x, t):

h(x, t) = εh1(x, t) + ε3h3(x, t) + ε5h5(x, t) + · · · ,

(8)

f (x, t) = 1 + ε2 f2(x, t) + ε4 f4(x, t)

+ε6 f6(x, t) + · · · , (9)

where ε is a formal expansion parameters. Bringing the
expansion Eqs. (8) and (9) into the bilinear equations
Eqs. (5) and (6), making the coefficient of the same
powers of ε equal to zero, can get the recursion relation
of hn(x, t) and fn(x, t) (n = 1, 2 · · · ). To derive one-
soliton solution for Eq. (3), assume that

h1(x, t) = eθ , (10)

h(x, t) = εh1(x, t), (11)

f (x, t) = 1 + ε2 f2(x, t), (12)

where θ = ψ(x)+ηt +φ0 with η as an arbitrary com-
plex parameter, ψ0 is a real constant, and ψ(x) is an
differentiable indeterminate function. Through substi-
tuting h1 = eθ into the linear partial differential equa-
tions consisting of recursion relations of gn(x, t) and
fn(x, t), the calculation yields:

ψ(x) = (iα2η
2 + α3η

3)x, (13)

f2(x, t) = eθ+θ∗

(η + η∗)2
, (14)

hn(x, t) = 0, (n = 3, 5 · · · ), (15)

fn(x, t) = 0, (n = 4, 6 · · · ). (16)

Without loss of generality, take ε = 1. The expres-
sion of one-soliton solution is:

q(x, t) = h(x, t)

f (x, t)
= eθ

1 + eθ+θ∗
(η+η∗)2

. (17)

To obtain the two-soliton solution for Eq. (3),
assume that h1(x, t), h(x, t) and f (x, t) are as follows:

h1(x, t) = eθ1 + eθ2 , (18)

h(x, t) = εh1(x, t) + ε3h3(x, t), (19)

f (x, t) = 1 + ε2 f2(x, t) + ε4 f4(x, t), (20)

where θ j = ψ j (x) + η j t + φ j ( j = 1, 2), η is an arbi-
trary complex parameter, ψ j (x) = (iα2η

2
j + α3η

3
j )x ,

and φ j is a real constant. Substituting Eqs. (18)–(20)
into Eqs. (5) and (6), and setting ε = 1, two-soliton
solutions of Eq. (3) can be explicitly expressed as:

q(x, t) = h1(x, t) + h3(x, t)

1 + f2(x, t) + f4(x, t)
, (21)

where h1(x, t), h3(x, t), f2(x, t) and f4(x, t) are indi-
cated as below:

h1(x, t) = eθ1 + eθ2 ,

h3(x, t) = A1e
θ1+θ2+θ∗

1 + A2e
θ1+θ2+θ∗

2 ,

f2(x, t) = B1e
θ1+θ∗

1 + B2e
θ2+θ∗

1 + B3e
θ1+θ∗

2

+B4e
θ2+θ∗

2 ,

f4(x, t) = C1e
θ1+θ2+θ∗

1+θ∗
2 ,

A1 = (η2 − η1)
2

(η∗
1 + η1)2(η

∗
1 + η2)2

,

A2 = (η2 − η1)
2

(η∗
2 + η1)2(η

∗
2 + η2)2

,

B1 = 1

(η∗
1 + η1)2

, B2 = 1

(η∗
1 + η2)2

,

B3 = 1

(η∗
2 + η1)2

, B4 = 1

(η∗
2 + η2)2

,

C1 = (η1 − η2)
2(η∗

1 − η∗
2)

2

(η∗
1+η1)2(η

∗
1+η2)2(η

∗
2+η1)2(η

∗
2 + η2)2

.

3 Discussion

3.1 One-soliton solution parameter analysis

In the analytic one-soliton solution of Eq. (3), there are
four parametersη,φ,α2 andα3.α2 andα3 are relative to
second- and third-order dispersion and nonlinear coef-
ficient which is the parameter to determine the basic
nature of optical pulse propagation. Others parameters
η and φ are variable parameters that have no connec-
tion with the basic nature of optical solitons. Firstly, in
order to discuss the impact of differentφ0 on the optical
solitons, we fix other values unchanged and choose the
different values of φ0. According to solution (17), we
can get the graphics shown in Fig. 1.

As we can see, from Fig. 1a, b, φ0 = 0, two rows of
solitons with the same shape but different peak posi-
tions are obtained. And the larger the value of φ0 is,
the more the soliton moves to the right. Obviously, φ0

does not affect the pulse waveform and propagation
direction. Not only that, the peak value will not change
if φ0 is taken different values. η is a complex num-
ber, and we might as well set η = p1 + p2i for dis-
cussing the real and imaginary parts separately, where
p1 and p2 are both arbitrary real constants, so that
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Fig. 1 One-soliton propagation for Eq. (3) with a η = 1, α2 = 1, α3 = 0.01, φ0 = 0. b η = 1, α2 = 1, α3 = 0.01, φ0 = ln5. c
η = 1 + 0.2i, α2 = 1, α3 = 0.01, φ0 = 0. d η = 1.5, α2 = 1, α3 = 0.01, φ0 = 0

Fig. 2 Soliton interactions described by two-soliton solutions (21) with η1 = 1, η2 = 1.5, α2 = 1, α3 = 0.01, φ2 = ln0.5, a
φ1 = ln(0.25). b φ1 = ln(0.75). c φ1 = 0. d φ1 = ln(4)

Fig. 3 Soliton interactions described by two-soliton solutions (21) with η2 = 1.5, α2 = 1, α3 = 0.01, φ2 = ln(0.5), φ1 = 0. a
η1 = 1.75. b η1 = 1. c η1 = 0.5. d η1 = 0.25

ψ(x) = (iα2η
2 + α3η

3)x = [(−2p1 p2α2 + 2p31α3 −
3p1 p22α3)+i((p21−p22)α2+(3p21−p22)p2α3)]x .Keep-
ing the same value of φ0, when the imaginary part
appears in η, the characteristics of solitons still remain
unchanged, but its transmission direction is deflected
observed via Fig. 1a, c. Furthermore, when the imagi-
nary part value increases, the angle between the trans-
mission direction and x-axis increases. According to
Fig. 1a, d, the real part of η has a certain impact on
peak value, waveform and peak position. The larger
the value of η is, the larger the peak value is. As the
effect of α2 and α3 on one-soliton is not obvious, it will
not be discussed here.

3.2 Two-soliton solution parameter analysis

Since φ0 affects the peak position of solitons, it can be
speculated that different values of φ1, φ2 can change

the relative position between two solitons during their
interactions. From Fig. 2, as the value of φ1 increases,
the initial position of the corresponding pulse moves.
So the distance between two rows of solitons decreases,
and the interaction of adjacent solitons becomes more
fierce. When φ1 increases to a certain extent, the inter-
val between two solitons increases with the intensity
of interaction decreasing. However, there is no change
in the number of wave peaks in the unit period, so that
the period of interaction cannot be adjusted by con-
trolling φ1. The parameter p1, which is the real part
of the parameter η, affects the peak position, peak
value and waveform in the one-soliton propagation.
And the imaginary part of the parameter p2 affects
the transmission direction of the one-soliton solution.
Therefore, when studying the influence of parame-
ter η on the interactions between two solitons, the
real part and imaginary part are also separately dis-
cussed. According to Fig. 3, it is obvious that due
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Fig. 4 Soliton interactions
described by two-soliton
solutions (21) with
η2 = 1.5, α2 = 1, α3 =
0.01, φ2 = ln(0.5), φ1 = 0.
a η1 = 1 + 0.1I . b
η1 = 1 + 0.5I

Fig. 5 Soliton interactions
described by two-soliton
solutions (21) with η1 = 1,
η2 = 1.5, α3 = 0.01, φ2 =
ln(0.5), φ1 = 0. a α2 = 0.8.
b α2 = 1.5

Fig. 6 Soliton interactions described by two-soliton solutions (21) with η1 = 1, η2 = 1.5, α2 = 1, φ2 = ln(0.5), φ1 = 0. a
α3 = 0.2. b α3 = 0.1. c α3 = 0.05. d α3 = 0

to the influence of the real part of parameter η on
the position of the soliton, the distance between the
solitons is reduced even coincidence and the interac-
tion becomes more obvious. In the meantime, the peak
value controlled by η1 also increases correspondingly
with the increase in p1. As the distance between soli-
tons shrinks and the peak energy increases, interac-
tion is enhanced and the period of interaction short-
ens. So different waveforms have different periods of
interactions.

Next, we will consider the imaginary part of param-
eter η j . According to the result in the previous section,
when the imaginary part does not equal to zero, two
solitons are no longer parallel to each other but inter-
sect at a certain angle. And taking different imaginary
value will change the angle of intersection. According
to Fig. 4a, b, two solitons interact at the intersection and
then continue to transmit along their respective direc-
tions, maintaining the original peak value, waveform
and direction. Not only that, when the imaginary part

value increases, the angle between two pulses becomes
larger.

For α2, when we keep other parameters unchanged,
it can be seen from Fig. 5 that α2 just affects the num-
ber of crests in a unit period. In another word, α2 will
impact on the period and does not have influence on
other properties of optical solitons. In Fig. 6, different
values of α3 are chosen to observe the effect on the
interaction between solitons. As we can see in Fig. 6,
as the value of α3 decreases, the angle between two
solitons decreases. Until α3 equals to 0, the angle is
also reduced to 0 and propagates parallel to the x-axis.
The interaction range increases during the decrease in
the angle.

4 Conclusion

In the present paper, analytic one- and two-soliton solu-
tions for the third-NLS equation have been obtained
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by the Hirota’s bilinear method. The influences of each
parameter on soliton interactions have been analyzed in
detail. The amplitude of the soliton has been only deter-
mined by the real part of η j , and η j also has a certain
impact on the peak position of solitons. The peak of the
soliton has become higher with the increase in the real
value of η j , while the relative distance of two solitons
has increased. Besides, the period has been affected by
η j . The angle between two solitons has become larger
as the imaginary part of η j increased. φ j has influences
on the initial position of solitons. α2 has been related to
the period directly, and the peaks have become dense
as α2 increased. Finally, α3 can be used to change the
directions of the soliton transmission. Results indicated
that interactions between periodic solitons have been
controlled with corresponding parameters.
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