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ABSTRACT
Considering the self-steepening effect in ametamaterial (MM) can significantly change its behaviour.
We study the propagation of ultrashort pulses in nonlinear MMs that is governed by a generalized
nonlinear Schrö dinger equation with higher order effects such as pseudo-quintic nonlinearity and
self-steepening effect. A class of chirped quasi-soliton solutions is obtained in the presence of the
self-steepening term, and someofwhicharederived for the first time. The solutions comprise chirped
bright quasi-solitons on a constant and zero background, kink and anti-kink quasi-solitons, and
double-kink quasi-solitons. It is found that the nonlinear chirp associated with each of these waves
is directly proportional to the intensity and its amplitude can be controlled by selecting the self-
steepeninganddispersion coefficients. Particular casesof chirp-freequasi-solitons arediscussed. The
conditions onMMparameters for the formation of these structures are also presented. The obtained
results are important to explore much richer localized light pulses in MMs.
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1. Introduction

Nonlinear propagation of light pulses in optical fibres has
attracted much more attention in recent years because
of their extensive applications to telecommunication and
ultrafast signal routing systems (1). In the picosecond
regime, the dynamics of such nonlinear wave packets are
usually described by the standard nonlinear Schrödinger
equation (NLSE), which contains only the group veloc-
ity dispersion (GVD) and self-phase modulation (SPM).
This model equation is derived fromMaxwell’s equations
(2), and it has two distinct types of localized solutions,
bright and dark soliton solutions, which are, respec-
tively, existent in the anomalous and normal dispersion
regimes (3).

To improve the capacity of high-bit-rate transmission
systems, it is essential to use ultrashort pulses whose
durations are shorter than 100 fs (4). In this case, the non-
linear susceptibility will produce higher order nonlin-
ear effects like the Kerr dispersion (i.e. self-steepening),
the delayed nonlinear response and even the third-order
dispersion.

CONTACT Qin Zhou qinzhou@whu.edu.cn School of Electronics and Information Engineering,Wuhan Donghu University, Wuhan 430212, People’s
Republic of China

Recently, the studies of the effect of self-steepening
nonlinearity on the known characteristics of solitons in
optical fibre media have become a topic of growing inter-
est (5, 6). Such a physically important effect, which is
due to the intensity dependence of group velocity (7),
causes an asymmetrical spectral broadening of the pulse
and distort the waveforms. It can also develop an opti-
cal shock, perceived as an extremely sharp near edge (5).
However, in the presence of both dispersion and the Kerr
nonlinear effect, solitons can be found that are robust
against the shock formation (8).

Compared with optical fibres, the study of soli-
ton’s dynamics in nonlinear metamaterials (MMs) with
dispersive permittivity and dispersive permeability has
received little attention. Noting that MMs are artificial
structures that display properties beyond those available
in naturally occurring materials (9). Particularly, the rich
linear and nonlinear electromagnetic properties enable
MMs to be potential candidates for stable soliton and
other nonlinear phenomena (10). Recently, Yang et al.
(11) studied the existence of quasi-solitons in MMs with
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pseudo-quintic nonlinearity under the very specific con-
dition of the vanishing self-steepening nonlinearity. As a
particular result, they obtained three new types of exact
bright, dark, bright-grey quasi-soliton solutions in the
absence of self-steepening parameter.

But with the increasing intensity of the optical field
and further shortening of the pulses up to the femtosec-
ond duration (<100 fs), the investigation of the self-
steepening term has become necessary in optical systems
(8). Thus, it is important to investigate the quasi-solitons
dynamics in MMs in the presence of this effect since the
latter will essentially influence the physical features of
propagating pulses.

In this paper, we study for the first time to our knowl-
edge the propagation characteristics of bright, kink and
double-kink quasi-solitons in nonlinearMMs in the pres-
ence of self-steepening effect. It is demonstrated that
the self-steepening nonlinearity could make the quasi-
solitons chirped, and the nonlinear chirp related to these
structures is directly proportional to the pulse intensity.
The particular case of vanishing the self-steepening term
which gives rise to thechirp-free bright quasi-soliton
solutions is also discussed. Furthermore, we investigate
the formation conditions and properties of these solu-
tions in detail.

The paper is arranged as follows. In Section 2, we
present the model under consideration and discuss its
particular cases. In Section 3, we discuss the method that
has been employed to get the chirped quasi-soliton solu-
tions. In Section 4, we present the exact form of analytical
solutions and discuss the particular case of obtaining
the chirp-free quasi-solitons. Concluding remarks and
perspectives are given in Section 5.

2. Theoretical model

We consider the propagation of ultrashort pulses in non-
linear MMs with non-Kerr-type nonlinearity. The evo-
lution of complex envelope ψ(z, t) of the electric field
can be described by the following generalized NLSE with
higher order effects (11, 12):

i
∂ψ

∂z
+ k2

2
∂2ψ

∂t2
+ p3 |ψ |2 ψ − p5 |ψ |4 ψ

− is1
∂

∂t
(|ψ |2 ψ) = 0, (1)

where t = cT/λp and z = Z/λp are the respective nor-
malized time and propagation distance, and λp is the
plasma wavelength. Also k2 stands for the GVD coeffi-
cient, s1 represents the self-steepening coefficient, while
p3 and p5 represent cubic and pseudo-quintic nonlinear
coefficients, respectively.

Equation (1) contains many physically relevant par-
ticular cases. For instance, Equation (1) for p5 = s1 = 0
reduces to the standard NLSE which includes only the
GVD and SPM effects (13, 14). For p5 = 0, Equation (1)
represents the modified NLSE which governs the propa-
gation of NLS soliton in the presence of Kerr dispersion
(5). If setting p3 = p5 = 0, Equation (1) reduces to the
Kaup–Newell equationwhich is usually called the deriva-
tive NLS I (15). Moreover, when s1 = 0, Equation (1)
reduces to the cubic–quintic NLSE which describes
the wave dynamics in a non-Kerr medium exhibit-
ing both third- and fifth-order susceptibilities (i.e. χ(3)
and χ(5)) (16). Furthermore, in case when p3 = s1 =
0, Equation (1) collapses to the case of quintic NLSE
describing the wave propagation in a pure quintic non-
linear medium (17).

Considering the self-steepening effect to be negligible
(i.e. s1 = 0), Yang et al. (11) have recently reported exact
quasi-soliton solutions for this equation by using the
ansatz method. Also, Marklund et al. (18) have investi-
gated the stability properties of a pulse within the frame-
work of Equation (1) and showed that the MM can influ-
ence the dynamics in significantways. Our interest here is
to obtain the exact chirped quasi-soliton solutions for this
equation in the presence of self-steepening coefficient.

3. Description of themethod

To derive the exact chirped quasi-soliton solutions of the
above model, we use the following complex travelling-
wave solution (19):

ψ(z, t) = ρ (ξ) ei[κz−	t−φ(ξ)], (2)

where ρ(ξ) is the unknown amplitude function assumed
to be real, ξ = t − χz is the travelling coordinate, φ(ξ)
is the parameter of the phase modification, and the real
parameters χ , κ and 	 denote, respectively, the inverse
velocity, wave number and frequency of the wave oscilla-
tion.

This envelope solution acquires an extra instantaneous
frequency shift (i.e. chirp) given by

δω(z, t) = − ∂

∂t
[κz −	t − φ (ξ)] = 	+ φ′ (ξ) , (3)

where the prime represents differentiationwith respect to
ξ .

Substituting Equation (2) into Equation (1), the real
and imaginary parts of the resulting equation, respec-
tively, read

− (
κ + χφ′) ρ + k2

2
ρ′′ − k2

2
(
	+ φ′)2 ρ + p3ρ3

− p5ρ5 − s1
(
	+ φ′) ρ3 = 0 (4)
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and

− χρ′ − k2
(
	+ φ′) ρ′ − k2

2
ρφ′′ − 3s1ρ2ρ′ = 0. (5)

For solving the above pair of coupled equations, we take
the ansatz of the form

φ′ = αρ2 + β , (6)

where α and β denote the nonlinear and constant chirp
parameters, respectively. The substitution of ansatz (6)
into Equation (5) yields two algebraic equations that
define the chirp parameters:

α = − 3s1
2k2

, β = −	− χ

k2
. (7)

Accordingly, the resultant chirp consisting of linear and
nonlinear contributions can be readily obtained as

δω (z, t) = − 3s1
2k2

ρ2 − χ

k2
. (8)

We notice that the resultant chirp related to optical quasi-
solitons is directly proportional to the pulse intensity
(with I = |ψ |2 = ρ2). We also see that the nonlinear
chirp parameter depends essentially on self-steepening
and GVD parameters. This implies that the amplitude of
chirping can be controlled by selecting these coefficients.

Further substitution of expression (6) along with rela-
tions (7) into (4) gives

ρ′′ + δρ + σρ3 + γρ5 = 0, (9)

where

δ = χ2 + 2k2 (	χ − κ)

k22
, (10a)

σ = 2(p3k2 + s1χ)
k22

, (10b)

γ = 3s21 − 8p5k2
4k22

. (10c)

Equation (9) is an elliptic-type differential equation
describing the evolution of the wave amplitude in the
MM. As we all know, this equation can be mapped into
ϕ6 field equation, which is well known to admit bright
soliton, dark soliton, kink and double-kink solutions
(20–22). In the following, we present different forms of
quasi-soliton solutions for this equation, illustrating the
richness of dynamics in nonlinear MMs governed by the
model under consideration. The chirping related to these
structures is also reported.

4. Results and discussions

Here we give exact analytical chirped quasi-soliton solu-
tions of NLSE (1) in the fs region. It will be shown that
these structures have nontrivial phase chirping which
varies as a function of intensity due to the Kerr dispersion
term.

4.1. Bright quasi-solitons

Here we present three types of chirped bright quasi-
soliton solutions of Equation (1) describing quasi-soliton
pulse on a constant and zero background.

4.1.1. Type-I
The first class of quasi-soliton that a non-Kerr MM can
support is of the form

ρ (ξ) = Asech (ηξ)√
1 + B sech2 (ηξ)

, (11)

which is an exact bright-type solution of Equation (9)
with the following pulse parameters:

A =
√
12B(1 + B)

(
p3k2 + s1χ

)
(1 + 2B)

(
8p5k2 − 3s21

) , (12a)

η = A

√
p3k2 + s1χ
(1 + 2B)k22

, (12b)

κ = k2
2

[
η2 −	2 +

(
	+ χ

k2

)2
]
. (12c)

Here the frequency shift	 and the inverse velocity χ are
arbitrary constants. Clearly, we must require that B(1 +
2B)(p3k2 + s1χ)(8p5k2 − 3s21) > 0 and (1 + 2B)(p3k2 +
s1χ) > 0, in order to ensure real amplitude and inverse
width relations, with the necessary conditions B>−1
and B �= − 1

2 .
Based upon the above finding, we obtain a first

nonlinearly chirped bright quasi-soliton solution of
Equation (1) in the form

ψ(z, t) = A sech [η (t − χz)]√
1 + B sech2 [η (t − χz)]

ei[κz−	t−φ(ξ)],

(13)
where the soliton parameters A, η and κ obey rela-
tions (12), while the frequency shift 	 and the inverse
velocity χ are arbitrary constants.

The corresponding chirping is given by

δω (z, t) = − 3s1A2 sech2 (ηξ)
2k2

[
1 + B sech2 (ηξ)

] − χ

k2
. (14)
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Figure 1. Typical amplitude profile of the (a) chirped bright quasi-soliton solution given by Equation (11) and (b) chirping profile given
by Equation (14) for B= 0.94 and χ = 2384.816.

Figure 1(a) depicts the amplitude profile of a typi-
cal chirped bright quasi-soliton for the following val-
ues of the model parameters (11): k2 = −0.19990, p3 =
5.0265 × 10−10 and p5 = −2.095 × 10−21. The value of
the self-steepening parameter is taken as s1 = 6.2918 ×
10−14. The corresponding chirping for the bright soliton
is also shown in Figure 1(b) (for z = 0). We clearly see
that the chirp has a maximum at the centre of the wave
and saturates at the same finite value as t → ±∞.

4.1.1.1. Chirp-free bright quasi-solitons (type-I). It is
easily seen that the particular exact bright quasi-soliton
solution reported in (11) can be reproduced here. Take
the case when the phase modification φ(ξ) = 0 in (2)
for example; it follows from Equation (2) that the phase
function reduces to a simple form κz −	t, which implies
that the resulting envelope solution is a chirp-free quasi-
soliton. By putting φ(ξ) = 0 in Equation (5), we obtain
the relation χ = −	k2 and the condition s1 = 0. Under
the latter condition, the formulas in Equations (12) can
be reduced to the form:

A =
√
3B(1 + B)p3
2(1 + 2B)p5

, (15a)

η = A
√

p3
(1 + 2B)k2

, (15b)

κ = k2
2

(
η2 −	2) . (15c)

Then a direct substitution of these results in (13) yields a
chirp-free solution for Equation (1) as follows:

ψ(z, t) = A sech [η (t − χz)]√
1 + B sech2 [η (t − χz)]

ei(κz−	t), (16)

which is exactly the bright quasi-soliton solution pre-
sented in (11). As can be clearly seen from (15a)

and (15b), the existence of this quasi-soliton structure
requires B(1 + 2B)p3p5 > 0 and (1 + 2B)k2p3 > 0 with
the condition B>−1.

4.1.2. Type-II
We have found an exact bright-type solution of
Equation (9) as

ρ (ξ) = λ
√
1 + sech (ηξ), (17)

where

λ =
√

−3
(
p3k2 + s1χ

)
3s21 − 8p5k2

, (18a)

η = λ2

√
3s21 − 8p5k2

3k22
, (18b)

κ = 4χ (χ + 2k2	) (8p5k2 − 3s21)+ 15
(
p3k2 + s1χ

)2
8k2(8p5k2 − 3s21)

,

(18c)

provided that 3s21 − 8p5k2 > 0 and p3k2 + s1χ < 0.
Having obtained the expressions for the pulse param-

eters λ, η and κ , we can write the complete chirped bright
quasi-soliton solution for Equation (1) as

ψ(z, t) = λ
√
1 + sech [η (t − χz)]ei[κz−	t−φ(ξ)], (19)

and the chirp is given by

δω (z, t) = − 3s1
2k2

λ2 (1 + sech (ηξ))− χ

k2
. (20)

The typical profiles for the amplitude and chirping (for
z=0) are shown in Figures 2(a,b), respectively, for k2 =
−0.19990, p3 = −5.0265 × 10−10, p5 = 2.095 × 10−21

and s1 = 6.2918 × 10−14. It is clear from Figure 2(a) that
the chirped bright quasi-soliton appears on a constant
background in contrast to Figure 1(a).
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Figure 2. Typical amplitude profile of the (a) chirped bright quasi-soliton solution given by Equation (17) and (b) chirping profile given
by Equation (20) forχ = −2384.816.

4.1.2.1. Chirp-free bright quasi-solitons (type-II). In
the case of φ(ξ) = 0 in (2), Equation (5) yields the rela-
tion χ = −	k2 and the condition s1 = 0. Under these
conditions, Equation (19) simplifies to the chirp-free
bright quasi-soliton solution:

ψ(z, t) = λ
√
1 + sech [η (t − χz)]ei(κz−	t), (21)

with the following parameters

λ =
√
3p3
8p5

, (22a)

η = λ2

√
−8p5
3k2

, (22b)

χ = −	k2, (22c)

κ = 32p5χ (χ + 2k2	)+ 15p23k2
64p5k2

. (22d)

Necessary conditions for the existence of this solution can
be obtained from Equations (22a) and (22b) as p3p5 > 0
and p5k2 < 0.

4.1.3. Type-III
In the limit of δ = 0, that is, at a specific value of the
wave number κ given by κ = (1/2k2)(χ2 + 2k2	χ),
one obtains an interesting algebraic bright-type solution
for (9) of the form

ρ (ξ) = 1√
M + Nξ 2

, (23)

where

M = − 3s21 − 8p5k2
12(p3k2 + s1χ)

, (24a)

N = − (p3k2 + s1χ)
k22

, (24b)

with the necessary conditions (3s21 − 8p5k2) > 0 and
(p3k2 + s1χ) < 0.

Making use of these findings, we can present the
third family of chirped bright quasi-soliton solution of
Equation (1) as

ψ(z, t) = 1√
M + Nξ 2

ei[κz−	t−φ(ξ)]. (25)

For this case, the chirping can be written as

δω (z, t) = − 3s1
2k2

1(
M + Nξ 2

) − χ

k2
. (26)

The typical profiles for amplitude and chirping (for
z=0) are shown in Figures 3(a,b), respectively, for k2 =
−0.19990, p3 = −5.0265 × 10−10, p5 = 2.095 × 10−21,
s1 = 6.2918 × 10−14 and χ = −2384.816.

4.1.3.1. Chirp-free bright quasi-solitons (type-III). If
we set φ(ξ) = 0 in (2), then Equation (5) yields the rela-
tion χ = −	k2 and the condition s1 = 0. Considering
the latter condition, it is easy to find that quasi-soliton
solution (25) may be reduced to the following chirp-free
bright quasi-soliton solution:

ψ(z, t) = 1√
M + Nξ 2

ei(κz−	t), (27)

where

M = 2p5
3p3

, N = −p3
k2

(28)

provided p3p5 > 0 and p3k2 < 0.

4.2. Kinked quasi-solitons

In this subsection, we present the exact chirped kink
quasi-soliton solutions and their characteristics for
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Figure 3. Typical amplitude profile of the (a) chirped bright quasi-soliton solution given by Equation (23) and (b) chirping profile given
by Equation (26) for the values mentioned in the text.

model equation (1). Note that kink-type solutions are
waveforms with |ψ(z, t)| approaching zero at one end
(the low end) and a nonzero constant at the other (high)
end. In optical contexts, a kink soliton is a shock wave
which propagates undistorted in a dispersive nonlinear
medium (23). Generally, optical kink solitons are of both
fundamental and technological importance if they are
stable under propagation. But the occurrence of these
structures in nonlinear optics is relatively rare (24).

In what follows, kink quasi-soliton solutions are
reported for the first time in the setting of MMs with
dispersive permittivity and dispersive permeability. In
particular, we consider the case in which the coefficient
γ in amplitude equation (9) is related to δ and σ with
the relation γ = 3σ 2/16δ. This corresponds to a specific
value of the wave number given by

κ =
(
χ2 + 2k2	χ

)
(3s21 − 8p5k2)− 3(p3k2 + s1χ)2

2k2(3s21 − 8p5k2)
.

(29)
In this case, we find that Equation (9) admits exact solu-
tions of the form

ρ (ξ) = Q
√
1 ± tanh (μξ), (30)

which describes kink-type (upper sign) and anti-kink-
type (lower sign) solution with the parameters

Q =
√

−χ
2 + 2k2 (	χ − κ)

(p3k2 + s1χ)
, (31a)

μ =
√

−χ
2 + 2k2 (	χ − κ)

k22
, (31b)

provided χ2 + 2k2(	χ − κ) < 0 and p3k2 + s1χ > 0.

Hence, we obtain a chirped kink and anti-king quasi-
soliton solution of Equation (1) as

ψ(z, t) = Q
√
1 ± tanh [μ (t − χz)]ei[κz−	t−φ(ξ)],

(32)
for which the chirping will be

δω (z, t) = − 3s1
2k2

Q2 [1 ± tanh (μξ)] − χ

k2
. (33)

In Figures 4(a,b), the typical profiles for the amplitude
and chirping (for z=0) are shown for the model param-
eters (11): k2 = −0.7954, p3 = 1.2566 × 10−10 and p5 =
−2.095 × 10−21. The self-steepening parameter is taken
as s1 = 6.2918 × 10−14 while χ = 3336.88 and	 = 0.

4.2.0.2. Chirp-free kinked quasi-solitons. If we set
φ(ξ) = 0 in (2), then Equation (5) yields the rela-
tion χ = −	k2 and the condition s1 = 0. In this case,
Equation (23) simplifies to the following chirp-free kink
and anti-kink quasi-soliton solutions:

ψ(z, t) = Q
√
1 ± tanh [μ (t − χz)]ei(κz−	t) (34)

where

Q =
√

−χ
2 + 2k2 (	χ − κ)

p3k2
, (35a)

μ =
√

−χ
2 + 2k2 (	χ − κ)

k22
, (35b)

provided that χ2 + 2k2(	χ − κ) < 0 and p3k2 > 0.

4.3. Double-kinked quasi-solitons

Equation (9) possesses double-kink solutions of the
form (21)

ρ (ξ) = p sinh (μξ)√
ε + sinh2 (μξ)

, (36)
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Figure 4. Typical amplitude profile of the (a) chirped kink quasi-soliton solution given by Equation (30) and (b) chirping profile given by
Equation (33) for the values mentioned in the text.
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Figure 5. Typical amplitude profile of the (a) chirped double-kink quasi-soliton solution given by Equation (36) and (b) chirping profile
given by Equation (39) for the values mentioned in the text. Here the values of ε are ε = 5000 (solid line) and ε = 50 (dashed line).

where

μ =
√

− δε

ε − 3
, (37a)

p =
√

−2δ(2ε − 3)
σ (ε − 3)

, (37b)

γ = −3μ2

p4

(
ε − 1
ε

)
(37c)

provided that ε �= 3, ε �= 3
2 and ε should take suffi-

ciently large values in order to get double-kink-type
quasi-soliton. Notice that reality of μ and p in (37a) and
(37b) can be ensured by demanding negativity of δ and
positivity of σ (namely, δ < 0 andσ > 0).

For this case, the complete chirped quasi-soliton solu-
tion of Equation (1) will be of the following form:

ψ(z, t) = p sinh [μ (t − χz)]√
ε + sinh2 [μ (t − χz)]

ei[κz−	t−φ(ξ)], (38)

and the chirping can be written as

δω (z, t) = − 3s1p2 sinh2 (μξ)
2k2

[
ε + sinh2 (μξ)

] − χ

k2
. (39)

The amplitude profile of this chirped quasi-soliton solu-
tion is illustrated in Figure 5(a) for the values of param-
eters (11): k2 = −0.7954, p3 = 1.2566 × 10−10 and p5 =
−2.095 × 10−21. The self-steepening parameter is taken
as s1 = 6.2918 × 10−14 while χ = 3336.88 and 	 = 0.
We can see that it exhibits a double-kink structure for ε
= 5000, while the two kinks join into a single one for ε
= 50. Figure 5(b) illustrates the chirp associated with this
interesting envelope double-kink quasi-soliton.

It is worth noting that many other types of functional
forms describing chirpedbright-type quasi-solitons can
also be obtained for dynamical amplitude equation (9)
and consequently for generalizedNLSE (1). This indicates
the richness of dynamics in nonlinear MM governed
byEquation (1).

A remarkable result is that all parameters of the
obtained chirped quasi-solitons depend on the self-
steepening coefficient s1. Hence, this effect may signif-
icantly influence the properties of these wave packets.
We also see that the self-steepening nonlinearity is an
important parameter for the formation of the derived
chirped quasi-solitons, and has an impact on the nonlin-
ear chirp parameter associated with each of these waves.
In contrast, the pseudo-quintic nonlinearity has no effect
on the nonlinear chirp parameter. It only influences the
amplitude, inverse pulse and the wave number of quasi-
solitons.
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5. Conclusions

In conclusion, we derived exact chirped quasi-soliton
solutions of a generalized NLSE describing the propaga-
tion of ultrashort pulses in nonlinear ( non-Kerr-type)
MMs. Three types of chirped bright quasi-soliton solu-
tions of this equation were found in the presence of
self-steepening effect by employing the travelling-wave
method. We also presented the chirped kink, anti-kink
and double-kink quasi-soliton solutions of the model for
some constraints. Such privileged structures characteris-
tically exist due to a balance among the GVD, pseudo-
quintic nonlinearity and self-steepening effect. The chirp
related to these localizedwave packets has also been iden-
tified and found that it is directly proportional to the
intensity of the wave. We have further deduced the exact
chirp-free quasi-soliton solutions of the model under
the condition of the vanishing self-steepening param-
eter. The amplitude and chirp profiles of these quasi-
soliton solutions are also shown for specific values ofMM
parameters.

Interesting subjects for future research would include
systematic studies of the stability of such chirped fem-
tosecond quasi-solitons under some perturbations by
employing the numerical simulation methods. It may be
amplitude perturbation, random noises and the slight
violation of the parametric conditions. Detailed stability
analyses are now under investigation.
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