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a b s t r a c t

We present solitary wave solutions of an extended nonlinear Schr€odinger equation with
higher-order odd (third-order) and even (fourth-order) terms by using an ansatz method.
The including high-order dispersion terms have significant physical applications in fiber
optics, the Heisenberg spin chain, and ocean waves. Exact envelope solutions comprise
bright, dark and W-shaped solitary waves, illustrating the potentially rich set of solitary
wave solutions of the extended model. Furthermore, we investigate the properties of these
solitary waves in nonlinear and dispersive media. Moreover, specific constraints on the
system parameters for the existence of these structures are discussed exactly. The results
show that the higher-order dispersion and nonlinear effects play a crucial role for the
formation and properties of propagating waves.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, considerable attention has been paid theoretically and experimentally to analyze the propagation of ul-
trashort pulses in optical fibers. For picosecond pulses, the wave dynamics is governed by the well known nonlinear
Schr€odinger (NLS) equation that includes the group velocity dispersion (GVD) and self-phase modulation (SPM) [1,2]. This
model equation is completely integrable by the inverse scattering transform (IST) [3], and it has two distinct types of localized
solutions, bright and dark soliton solutions, which are, respectively, existent in the anomalous and normal dispersion regimes
[4e7]. Physically, such structures exist as a result of the balance between GVD and SPM nonlinearity. It is worth noting that
the SPM is the nonlinear effect due to the lowest dominant nonlinear susceptibility cð3Þin silica fibers [8].

However, as one increases the intensity of the incident light power to produce shorter (femtosecond) pulses, the standard
NLS equation becomes inadequate to describe thewave dynamics more accurately. Some additional higher-order effects, such
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as third- and fourth-order dispersions, self-steepening, and nonlinear response effects, will play important roles in the
propagation of optical pulses. In particular, it has been demonstrated that if short pulses whose width is nearly 50 fs have to
be injected; the third-order dispersion becomes important andmust be included in the governing equation [9e11]. Moreover,
as the pulses become extremely short (below 10 fs), fourth-order dispersion also must be taken into account [12,13]. In
addition, it was found that a relatively large number of optical materials display higher-order nonlinear effects such the non-
Kerr quintic nonlinearity arising due to fifth-order susceptibilitycð5Þ. Among them, we mention here semiconductors (e.g.,
AlxGa1-xAs, CdS, and CdS1-xSex) waveguides and semiconductor-doped glasses (see, e.g. [14]). In addition, it has been shown
that cubic-quintic nonlinearity correctly describes the dielectric response of poly diacetylene p-toluene sulphonate (PTS)
crystal [15e17]. Theoretically, the quintic nonlinearity occurs from the expansion of the refractive index in powers of intensity
I of the light pulse as: n ¼ n0 þ n2I þ n4I2 þ :::; Here n0 is the linear refractive index coefficient, n2 and n4 are the cubic and
quintic nonlinearity coefficients which are related to third-order and fifth-order susceptibility, respectively [18].

To describe the propagation of femtosecond pulses in optical fibers with the above mentioned effects, one has to extend
the order of nonlinear terms in the standard NLS equation beyond Kerr nonlinearity. The higher-order nonlinear Schr€odinger
(HNLS) equation with additional correction terms is therefore the main nonlinear equation governing the pulse evolution in
highly nonlinear media. Note that with the consideration of higher-order effects, the physical features and the stability of the
NLS soliton can change significantly.

A number of generalizations of the cubic NLS equation have been proposed to describe nonlinear propagation of ultrashort
pulses in a variety of nonlinear dispersive materials, which may allow a more accurate adjustment of the usual equation to
practical needs. Well known higher-order NLS models include the Hirota [19], Sasa-Satsuma [20], and Lakshmanan-
Porsezian-Daniel (LPD) [21] equations. As concerns the LPD equation, this important model is the result of a generaliza-
tion of the cubic NLS equation that includes a fourth-order dispersion term.

More recently, Ankiewicz et al. proposed a further generalization of the NLS equation, adding a third-order dispersion
term to the LPD equation of the form [22]:

iEx þ 1
2
Ett þ jEj2E þ g

�
Etttt þ 6r1E

2
t E

* þ 4r2EjEt j2 þ 8r3Ett jEj2 þ 2r4E
*
ttE

2 þ 6r5EjEj4
�
� ia3

�
Ettt þ 6r6Et jEj2 þ 6r7E2E*t

�
¼ 0

(1)
where Eðx; tÞ represents the envelope of thewaves in the context of nonlinear optics, x is the propagation variable, and t is
time in the moving frame. The subscripts indicate partial derivatives. The seven real constants ri ði ¼ 1; :::; 7Þ are free real
parameters, and the coefficients a3 and g are also real parameters related to third-order dispersion Ettt and fourth-order
dispersion Etttt , respectively. Also, the terms jEj2E and jEj4E represent cubic and quintic nonlinearities of the medium,
respectively. The other higher-order terms in Eq. (1) are needed for sufficiently short pulses.

Equation (1) is very general because it includes many integrable particular cases. In the absence of third- and fourth-order
dispersion terms (a3 ¼ g ¼ 0), the model equation reduces to the standard NLSE which has only the terms describing lowest
orderdispersion and self-phasemodulation.Moreover, forg ¼ 0,r6 ¼ 1 andr7 ¼ 0, Eq. (1) becomes theHirota equation [19],while
the case a3 ¼ 0 andrj ¼ 1 (with j ¼ 1 ; ::;5) gives rise the LPD equation [21]. Additionally, the Sasa-Satsuma equation [22] cor-
responds to the particular wheng ¼ 0,r6 ¼ 3=2 andr7 ¼ 1=2. Thus, due to these relevant integrable cases, Eq. (1) is capable of
describing thewave propagation in a variety of physical systems. In themost general case, when all the parameters are nonzero,
i.e., when a3s0, gs0, and ri s0, exact rogue wave solutions of the first and second order have been presented in Ref. [22].
Furthermore, the existence of dipole soliton solutions of Eq. (1) has recently been demonstrated under specific conditions [23].
Besides, a derivation of soliton solutions and roguewaveof Eq. (1)with r7 ¼ 0 andrj ¼ 1 (with j ¼ 1 ; ::;6) appears inRefs. [24,25].
TheexistenceofN-solitonsolutions inthisextendedmodelhasbeenrecently investigatedbyYombaandZakeri [26].Asamatterof
fact, this model is very important especially to adjust to the current progress in highly dispersive nonlinear fiber media.

It is desirable to study the influence of additional higher-order dispersion terms, alongwith the quintic non-Kerr nonlinearity
and higher-order nonlinear dispersive terms on the properties of different types of exact solutions of Eq. (1), e.g., W-shaped
solution, bright and dark optical solitary wave solutions. Certainly, such investigation is relevant for a better understanding of
the mechanism of the complicated physical phenomena and dynamical processes modeled by the model. We mention that
having an explicit analytic solution has the advantage that we can compare experimental results with theory.

In this paper, we are going to employ the complex amplitude function ansatz proposed by Li et al. [27] to investigate exact
solitary wave solutions for the extended model (1). Note that such an ansatz has been successfully utilized to derive solitary
wave solutions for large classes of higher-order NLS family of equations [28e30]. The solutions comprise solitary wave
structures of the bright, dark and W-shaped kind. We also study the properties and evolution of the solitary wave envelopes
and find the parametric conditions of their existence.

The rest of the paper is organized as follows. In Sec. II, we present the extended NLS equation with additional third- and
fourth-order dispersive terms, which are of particular importance in diverse nonlinear physical systems, such as in fiber
optics, in the case of the Heisenberg spin chain, and for oceanwaves. In Sec. III, we derive solitary wave solutions of the model
equation by adopting a complex amplitude ansatz. Parametric conditions for the existence of obtained solutions along with
the wave properties are also presented. Finally, our conclusions will be addressed in Sec. IV.
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2. Theoretical background

To obtain the exact solitary wave solutions of Eq. (1) we consider a solution of the form [27].

Eðx; tÞ ¼ Aðx; tÞexp½i4ðx; tÞ� (2)
where Aðx; tÞis the complex envelope function and 4ðx; tÞ ¼ kx� Ut is the linear phase shift. Also, k and Uare the respective
real parameters describing wave number and frequency shift. Substituting Eq. (2) into Eq. (1) and removing the exponential
term, we recast Eq. (1) as:

iAx þ ia1At þ a2Att þ a3jAj2A� ia4jAj2At � ia5A2A�
t�a6Aþ a7jAj4Aþ gAtttt � ia8Attt þ a9A

2
t A
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tt

¼ 0

(3)
where
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2 þ 4gU3

1 2
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2
� 3a3U� 6gU

a ¼ 1þ 6a Uðr �r Þ þ 2gU2ð2r �3r �4r �r Þ
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To search for exact solitary wave solutions of Eq. (3), we adopt a complex amplitude ansatz as follows [27]:

Aðx; tÞ ¼ ibþ l tanh½hðt � cxÞ� þ irsech½hðt � cxÞ� (4)

where handcare the pulse width and shift of inverse group velocity, respectively. From the ansatz solution (4), it is apparent
that the amplitude of solitary wave solutions is nonzero when the time variable approaches infinity.

In the limitb ¼ l ¼ 0, we obtain a bright solitary wave solution, but when r ¼ 0 the solution given in Eq. (4) transforms to
dark solitary waveform. The presence of the parametersb, l and rpermits the ansatz (4) to describe the features of both bright
and dark solitary waves. It is worth noting thathc, k andUare all real values but b, l and rcan be real or complex numbers [31].

Then we find the nontrivial non-linear phase shift function4ðx; tÞas:

4ðx; tÞ ¼ arctan
�
bþ rsech½hðt � cxÞ�
l tanh½hðt � cxÞ�

�
(5)
Further, we can see that the amplitude function takes the form:

jAðx; tÞj ¼
n�

l2 þ b2
�
þ 2brsech½hðt � cxÞ� þ

�
r2 � l2

�
sech2½hðt � cxÞ�

o1=2
(6)
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Substituting Eq. (4) into Eq. (3), expanding tanh terms to sech term and setting the coefficients for the independent terms
containing independent combinations of this hyperbolic functions equal to zero, we obtain the following 11 independent
parametric equations:
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From the above 11 equations, we will discuss the various possible cases which enable us to distinguish the different types
of solitary wave solutions that exist for the extended NLS equation with higher-order odd and even terms (1).

3. Exact solitary wave solutions and their properties

In this section, we impose some restrictions on the depending parameters so that the resulting Eqs. (7a)-(7k) become
compatible. Solving these equations, we find that there exist three cases of exact solitary wave solutions for Eq. (1). In what
follows, we present these solutions and investigate the formation conditions and properties of solitary waves in detail.
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3.1. Case 1

When a4 þ a5 ¼ 0and a8 ¼ a11 ¼ a12 ¼ 0, we have found the solution of Eq. (3) as

Aðx; tÞ ¼ H
1
2
rþ irsech½hðt � cxÞ� (8)

i
which implies that b ¼ ±2 rand l ¼ 0 in the ansatz solution (4). Consequently, from Eqs. (7a)-(7k), we obtain the relations:

a1 ¼ c; a2 ¼ �5gh2; a3 ¼ �5gh4

r2
; a6 ¼ 13gh4

8
; a7 ¼ 6gh4

r4
; a9 þ a10 ¼ 30gh2

r2
(9)
These results yield the following parameters of the solitary wave solution:

h2 ¼ �12gU2 þ 1
10g

(10)

c ¼ �8gU3 � U (11)
13 4 1 2 4
k ¼
8

gh �
2
U � 3gU (12)

h4

r4 ¼

r5
(13)

With
U ¼ �a3
4g

(14)
Combining Eqs. (2) and (8), we obtain the complete solution for Eq. (1) in the form

Eðx; tÞ ¼
�
H
1
2
rþ irsech½hðt � cxÞ�

	
exp½iðkx� U tÞ� (15)
and its corresponding intensity function is in the form

jEðx; tÞj2 ¼ r2
�
1
4
þ sech2½hðt � cxÞ�

�
(16)
From the above mentioned conditions, we find that the solitary wave solution (8) exists for Eq. (1) whenr3 ¼ r4 ¼ 0 and
r6 þ r7 ¼ r1=2. One can also see from inserting (14) into (10) that the fourth-order dispersion coefficient must satisfy the
condition g< � 3a23=4; which implies that the present solution exists for negative values of the fourth-order dispersion.
Additionally, onemust choose the parameter of quintic nonlinearity to satisfyr5 >0, as clearly seen in from Eq. (13). It is worth
observing that here the pulse width h depends only on the third- and fourth-order dispersion parameters a3 andg [see Eq.
(10) with (14)].

The intensity profile of the solitary wave solution is depicted in Fig.1(a), as computed from Eq. (16) for the values r ¼ h ¼ 1
andc ¼ 0:1. From it, one can clearly see that the solution (8) represents a bright solitary wave that propagates on a continuous
wave background in the presence of higher-order effects. It is interesting to see that the wave profile remains unchanged
during evolution which we have shown in Fig. 1(b).

3.2. Case 2

When a4 þ a5 ¼ 0and a7 ¼ a8 ¼ a10 ¼ 0, one obtains a solitary wave solution of Eq. (3) of the form

Aðx; tÞ ¼ �
ffiffiffi
5

p

4
irþ ir sec h½hðt � cxÞ� (17)

ffiffiffi
5

p

which means that b ¼ � 4 rand l ¼ 0in the ansatz solution (4). Accordingly, from Eqs. (7a)-(7k), we get the following
expressions:



Fig. 1. (a) Intensity of the solitary wave profile jEð0; tÞj2j as a function of t and its (b) evolution as computed from Eq. (16) for the values r ¼ h ¼ 1 andc ¼ 0:1.
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a1 ¼ c; a2 ¼ 31
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gh2; a3 ¼ �8gh4
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; a6 ¼ �5
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r2
; a11 þ a12 ¼ �12gh2
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These relations lead to the following solitary wave parameters:
h2 ¼ 24gU2 þ 2
31g

(19)

c ¼ �8gU3 � U (20)
5 4 1 2 4
k ¼ �
2
gh �

2
U � 3gU (21)

8h2

r2 ¼

r1
(22)

With
U ¼ �a3
4g

(23)
With these parameters, we find that the complete solitary wave solution for Eq. (1) can be written in the form

Eðx; tÞ ¼
(

�
ffiffiffi
5

p

4
irþ ir sec h½hðt � cxÞ�

)
exp½iðkx� U tÞ� (24)

and its intensity is given by
jEðx; tÞj2 ¼
"
�

ffiffiffi
5

p

4
rþ rsech½hðt � cxÞ�

#2
(25)

2
Bases on the above conditions, we find that the solution (17) exists provided thatr1 >0, r2 ¼ r5 ¼ 0andg> � 3a3=4.
Additionally, Eq. (23) together with the condition a4 þ a5 ¼ 0 require self-steepening and self-frequency shift coefficients
must satisfy r6 þ r7 ¼ ð3r1 þ 4r3�r4Þ=6. Note that the wave parameter r is directly proportional to the width h, and depends
only on the coefficient r1 [see Eq. (22)].

Fig. 2(a) shows the intensity profile of the solitary wave solution as computed from Eq. (25) for the parameter values
r ¼ h ¼ 1andc ¼ 0:1, while Fig. 2(b) depicts its evolution. Unlike the first case, we see that the intensity profile of the wave
takes the shape of W. It is worth noting that this type of solitary wave solutions has first been found for a higher-order NLS
equation with third-order dispersions, self steepening, and self-frequency shift effects by Li et al. [25].

3.3. Case 3

When a4 � 3a5 ¼ 0and a7 ¼ a9 ¼ a11 ¼ 0, one can find a solitary wave solution of Eq. (3) of the form



Fig. 2. (a) Intensity of the solitary wave profile jEð0; tÞj2j as a function of t and its (b) evolution as computed from Eq. (25) for the values r ¼ h ¼ 1 andc ¼ 0:1.
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Aðx; tÞ ¼ l tanh½hðt � cxÞ� þ irsech½hðt � cxÞ� (26)

which means that b ¼ 0 in the ansatz solution (4). Then, from Eqs. (7a)-(7k), we can obtain the following expressions:
a1 ¼ cþ 2a5
3

�
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; a2 ¼

gh2
�
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�
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; (27)

which yield the solitary wave parameters:
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6
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�
(28)
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l2 ¼ 4 3 7 6 4 4

8gr24
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U ¼ ð24r7 þ r4Þa3
44gr4

(33)

Therefore, we found the solution for Eq. (1) as
Eðx; tÞ ¼ fl tanh½hðt � cxÞ� þ irsech½hðt � cxÞ�gexp½iðkx� U tÞ� (34)

whose intensity is
jEðx; tÞj2 ¼ l2 þ
�
r2 � l2

�
sech2½hðt � cxÞ� (35)
For this case, we must have r1 ¼ r3 ¼ r5 ¼ 0 for the solution (34) to exist. Now from Eq. (33) and the condition
a4 � 3a5 ¼ 0, we can find another restriction on the model parameters as 33r4ð6r7 � r6Þ ¼ ð3r4 � 4r2Þð24r7 þ r4Þ.

From Eq. (28), it is clear to see that if r4 <0ð>0Þ, one must require r2 � l2 >0 ð<0Þ, and the solution (34) represents a
brightlike (darklike) solitary wave. Here we consider the special case of r4 >0 and r2 � l2 <0. In Fig. 3(a), we have presented



Fig. 3. (a) Intensity of the solitary wave profile jEð0; tÞj2j as a function of t and its (b) evolution as computed from Eq. (35) for the values r ¼ h ¼ 1, l ¼
ffiffiffi
2

p

andc ¼ 0:1.
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the intensity profile of the above solitary wave using the values r ¼ h ¼ 1, l ¼
ffiffiffi
2

p
, andc ¼ 0:1, while Fig. 3(b) depicts its

evolution. We can see that this solution describes the propagation of a gray solitary pulse (dark wavewith nonzero minimum
intensity) on a continuous-wave background, which does not change during the propagation distance as shown in Fig. 3(b).

4. Conclusion

In conclusion, we have considered an extended NLS equationwith third- and fourth-order dispersion terms for describing
ultrashort pulse propagation in highly dispersive media. Exact solitary wave solutions of the model have been derived using
an ansatz method. The resulting solutions are in the form of bright, dark and W-shaped solitary waves. We have also pre-
sented the necessary conditions onmaterial parameters for the formation of these localized structures. Considering the utility
of the equation in fiber optics and other branches of physics, these solutions may find practical applications.

Future research may include a systematic study of the stability of the solitary waves presented here under the influence of
finite perturbations by employing the numerical simulation methods. It would be also especially relevant to consider the
same envelope equation but including distributed parameters to investigate femtosecond optical pulse propagation in
inhomogeneous fiber media. Such studies are currently in progress and will be reported in future publications.
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