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optics, the Heisenberg spin chain, and ocean waves. Exact envelope solutions comprise
bright, dark and W-shaped solitary waves, illustrating the potentially rich set of solitary
wave solutions of the extended model. Furthermore, we investigate the properties of these
. . . solitary waves in nonlinear and dispersive media. Moreover, specific constraints on the
Higher-order dispersion . .
Complex amplitude ansatz system paramete.rs for the ex1s.tence.of these struFtures are discussed exa;tly. The results
Solitary wave show that the higher-order dispersion and nonlinear effects play a crucial role for the
formation and properties of propagating waves.
© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, considerable attention has been paid theoretically and experimentally to analyze the propagation of ul-
trashort pulses in optical fibers. For picosecond pulses, the wave dynamics is governed by the well known nonlinear
Schrodinger (NLS) equation that includes the group velocity dispersion (GVD) and self-phase modulation (SPM) [1,2]. This
model equation is completely integrable by the inverse scattering transform (IST) [3], and it has two distinct types of localized
solutions, bright and dark soliton solutions, which are, respectively, existent in the anomalous and normal dispersion regimes
[4—7]. Physically, such structures exist as a result of the balance between GVD and SPM nonlinearity. It is worth noting that
the SPM is the nonlinear effect due to the lowest dominant nonlinear susceptibility x()in silica fibers [8].

However, as one increases the intensity of the incident light power to produce shorter (femtosecond) pulses, the standard
NLS equation becomes inadequate to describe the wave dynamics more accurately. Some additional higher-order effects, such
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as third- and fourth-order dispersions, self-steepening, and nonlinear response effects, will play important roles in the
propagation of optical pulses. In particular, it has been demonstrated that if short pulses whose width is nearly 50 fs have to
be injected; the third-order dispersion becomes important and must be included in the governing equation [9—11]. Moreover,
as the pulses become extremely short (below 10 fs), fourth-order dispersion also must be taken into account [12,13]. In
addition, it was found that a relatively large number of optical materials display higher-order nonlinear effects such the non-
Kerr quintic nonlinearity arising due to fifth-order susceptibilityx(®). Among them, we mention here semiconductors (e.g.,
Al,GaixAs, CdS, and CdS;xSex) waveguides and semiconductor-doped glasses (see, e.g. [14]). In addition, it has been shown
that cubic-quintic nonlinearity correctly describes the dielectric response of poly diacetylene p-toluene sulphonate (PTS)
crystal [15—17]. Theoretically, the quintic nonlinearity occurs from the expansion of the refractive index in powers of intensity
I of the light pulse as: n = ng + nyl + n4l? + ..., Here nq is the linear refractive index coefficient, n, and n,4 are the cubic and
quintic nonlinearity coefficients which are related to third-order and fifth-order susceptibility, respectively [18].

To describe the propagation of femtosecond pulses in optical fibers with the above mentioned effects, one has to extend
the order of nonlinear terms in the standard NLS equation beyond Kerr nonlinearity. The higher-order nonlinear Schrodinger
(HNLS) equation with additional correction terms is therefore the main nonlinear equation governing the pulse evolution in
highly nonlinear media. Note that with the consideration of higher-order effects, the physical features and the stability of the
NLS soliton can change significantly.

A number of generalizations of the cubic NLS equation have been proposed to describe nonlinear propagation of ultrashort
pulses in a variety of nonlinear dispersive materials, which may allow a more accurate adjustment of the usual equation to
practical needs. Well known higher-order NLS models include the Hirota [19], Sasa-Satsuma [20], and Lakshmanan-
Porsezian-Daniel (LPD) [21] equations. As concerns the LPD equation, this important model is the result of a generaliza-
tion of the cubic NLS equation that includes a fourth-order dispersion term.

More recently, Ankiewicz et al. proposed a further generalization of the NLS equation, adding a third-order dispersion
term to the LPD equation of the form [22]:

1 . . . .
iEy + Ee + |E]E + y(Em + 611 E2E" + 41, E|E¢|> + 8r3Eq|E]> + 2r4Ep B + 6r5E\E\4> —iag (Em + 6rgEc|E]> + 6r7EZE[)
-0
(1)

where E(x, t) represents the envelope of the waves in the context of nonlinear optics, x is the propagation variable, and ¢ is
time in the moving frame. The subscripts indicate partial derivatives. The seven real constants r; (i=1,...,7) are free real
parameters, and the coefficients a3 and vy are also real parameters related to third-order dispersion Ey; and fourth-order
dispersion Eyy, respectively. Also, the terms |E\2E and |E\4E represent cubic and quintic nonlinearities of the medium,
respectively. The other higher-order terms in Eq. (1) are needed for sufficiently short pulses.

Equation (1) is very general because it includes many integrable particular cases. In the absence of third- and fourth-order
dispersion terms (a3 = v = 0), the model equation reduces to the standard NLSE which has only the terms describing lowest
order dispersion and self-phase modulation. Moreover, fory = 0,/ = 1 andr; = 0, Eq. (1) becomes the Hirota equation [19], while
the case a3 = 0 andr; = 1 (withj =1, ..,5) gives rise the LPD equation [21]. Additionally, the Sasa-Satsuma equation [22] cor-
responds to the particular wheny = 0,rg = 3/2 andr; = 1/2. Thus, due to these relevant integrable cases, Eq. (1) is capable of
describing the wave propagation in a variety of physical systems. In the most general case, when all the parameters are nonzero,
i.e., when a3 #0, Y0, and r; #0, exact rogue wave solutions of the first and second order have been presented in Ref. [22].
Furthermore, the existence of dipole soliton solutions of Eq. (1) has recently been demonstrated under specific conditions [23].
Besides, a derivation of soliton solutions and rogue wave of Eq. (1) withr; = 0andr; = 1 (withj = 1, ..,6) appears in Refs. [24,25].
The existence of N-soliton solutionsin this extended model has been recently investigated by Yomba and Zakeri [26]. As a matter of
fact, this model is very important especially to adjust to the current progress in highly dispersive nonlinear fiber media.

It is desirable to study the influence of additional higher-order dispersion terms, along with the quintic non-Kerr nonlinearity
and higher-order nonlinear dispersive terms on the properties of different types of exact solutions of Eq. (1), e.g., W-shaped
solution, bright and dark optical solitary wave solutions. Certainly, such investigation is relevant for a better understanding of
the mechanism of the complicated physical phenomena and dynamical processes modeled by the model. We mention that
having an explicit analytic solution has the advantage that we can compare experimental results with theory.

In this paper, we are going to employ the complex amplitude function ansatz proposed by Li et al. [27] to investigate exact
solitary wave solutions for the extended model (1). Note that such an ansatz has been successfully utilized to derive solitary
wave solutions for large classes of higher-order NLS family of equations [28—30]. The solutions comprise solitary wave
structures of the bright, dark and W-shaped kind. We also study the properties and evolution of the solitary wave envelopes
and find the parametric conditions of their existence.

The rest of the paper is organized as follows. In Sec. I, we present the extended NLS equation with additional third- and
fourth-order dispersive terms, which are of particular importance in diverse nonlinear physical systems, such as in fiber
optics, in the case of the Heisenberg spin chain, and for ocean waves. In Sec. I1I, we derive solitary wave solutions of the model
equation by adopting a complex amplitude ansatz. Parametric conditions for the existence of obtained solutions along with
the wave properties are also presented. Finally, our conclusions will be addressed in Sec. IV.



I. Bendahmane et al. / Superlattices and Microstructures 114 (2018) 53—61 55
2. Theoretical background

To obtain the exact solitary wave solutions of Eq. (1) we consider a solution of the form [27].

E(x,t) = A(x, t)explig(x, t)] (2)

where A(x, t)is the complex envelope function and ¢(x,t) = kx — Qt is the linear phase shift. Also, k and Qare the respective
real parameters describing wave number and frequency shift. Substituting Eq. (2) into Eq. (1) and removing the exponential
term, we recast Eq. (1) as:

iAx + i1 A + ayAn + a3]APA — iag|APPAr — iasA%A; —agA + az|A[*A + YA — iagAue + QgAZA” + a10lAr|?A + a11|APAx
+ a12A2A;
=0

where

a; = —Q+3a3Q% + 4yQ3

1
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a =

a3 = 1+ 603Q(r7—1g) + 27Q%(2ry—3r, —4r3—r14)
a4 = 6asrg + 4’}’9(31‘1 — Ty + 4r3)

as = 6asry +4’Y.Q(T2—l‘4)

g = /<+%Q2 ~ 3@ — y0?

a7 = 6vrs

ag = a3 +4yQ
ag = 671y

ajo = 4yr;

ay = 8yr3
Q12 = 291y

To search for exact solitary wave solutions of Eq. (3), we adopt a complex amplitude ansatz as follows [27]:
A(x,t) = if + A tanh[n(t — xx)] + ipsech[n(t — xx)] (4)

where nandyare the pulse width and shift of inverse group velocity, respectively. From the ansatz solution (4), it is apparent
that the amplitude of solitary wave solutions is nonzero when the time variable approaches infinity.

In the limit@ = A = 0, we obtain a bright solitary wave solution, but when p = 0 the solution given in Eq. (4) transforms to
dark solitary waveform. The presence of the parametersg, A and ppermits the ansatz (4) to describe the features of both bright
and dark solitary waves. It is worth noting thatny, k and Qare all real values but , A and pcan be real or complex numbers [31].

Then we find the nontrivial non-linear phase shift functiong(x, t)as:

B + psechin(t — XX)])
Atanh[n(t — xx)]

o(x,t) = arctan( (5)
Further, we can see that the amplitude function takes the form:

A0 = { (72 + 67) + 28psechin(e — 0] + (42 — i7)seckn(e — )} 6)
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Substituting Eq. (4) into Eq. (3), expanding tanh terms to sech term and setting the coefficients for the independent terms

containing independent combinations of this hyperbolic functions equal to zero, we obtain the following 11 independent
parametric equations:
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(78)
2as (82 +22) ~ag + a7 (82 +A2)2] _0 (7h)
8[as (8 +12)—ag + a7 (8 + A2>2} —0 (7i)
p|24n*y +az (Pz - /\2>2 -7 (Pz - /12)(09 + o + 2011 + 2012)} =0 (7))
3 24n*y + a7 (0 - Az>2 — 1P (p? ~ 2%) (@9 + aro + 2a1; + 2a12)} =0 (7k)

From the above 11 equations, we will discuss the various possible cases which enable us to distinguish the different types
of solitary wave solutions that exist for the extended NLS equation with higher-order odd and even terms (1).

3. Exact solitary wave solutions and their properties
In this section, we impose some restrictions on the depending parameters so that the resulting Egs. (7a)-(7k) become

compatible. Solving these equations, we find that there exist three cases of exact solitary wave solutions for Eq. (1). In what
follows, we present these solutions and investigate the formation conditions and properties of solitary waves in detail.
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3.1 Case1

When a4 + a5 = 0and ag = a;; = a;; = 0, we have found the solution of Eq. (3) as

p + ipsech[n(t — xx)] (8)

N[ —

Ax,t)=TF

which implies that § = i%pand A =0 in the ansatz solution (4). Consequently, from Egs. (7a)-(7k), we obtain the relations:

ay =y, a3 =-5y7% a3 = 52247 3 = 13;/”47 a7 = 671)4; ag +ajp = 30/:2”2 9)
These results yield the following parameters of the solitary wave solution:
o 21 (10)
x=-8y2>-Q (11)
k:157n4719273794 (12)
8 2
= (13)
With
Q:—% (14)
Combining Egs. (2) and (8), we obtain the complete solution for Eq. (1) in the form
E(x,t) = {i%p + ipsechn(t — xx)]}exp[i(kx — Q)] (15)
and its corresponding intensity function is in the form
B 07 = 2 -+ sl n(e — o) (16)

From the above mentioned conditions, we find that the solitary wave solution (8) exists for Eq. (1) whenrz = r4 = 0 and
Ig + 7 = r1/2. One can also see from inserting (14) into (10) that the fourth-order dispersion coefficient must satisfy the
condition y < — 3a3/4, which implies that the present solution exists for negative values of the fourth-order dispersion.
Additionally, one must choose the parameter of quintic nonlinearity to satisfyrs > 0, as clearly seen in from Eq. (13). It is worth
observing that here the pulse width n depends only on the third- and fourth-order dispersion parameters a3 andy [see Eq.
(10) with (14)].

The intensity profile of the solitary wave solution is depicted in Fig. 1(a), as computed from Eq. (16) for the valuesp =7 =1
andy = 0.1. From it, one can clearly see that the solution (8) represents a bright solitary wave that propagates on a continuous
wave background in the presence of higher-order effects. It is interesting to see that the wave profile remains unchanged
during evolution which we have shown in Fig. 1(b).

3.2. Case 2
When a4 + a5 = 0and a; = ag = a1 = 0, one obtains a solitary wave solution of Eq. (3) of the form
5. .
Alx,t) = fglp +ip sec h|n(t — xx)] (17)

which means that § = —VTgpand A= 0in the ansatz solution (4). Accordingly, from Egs. (7a)-(7k), we get the following
expressions:
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Fig. 1. (a) Intensity of the solitary wave profile |E(0, t)\2| as a function of t and its (b) evolution as computed from Eq. (16) for the values p =7 =1 andy =0.1.

8yt 5 48yn? 12yn?
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These relations lead to the following solitary wave parameters:

24vQ% +2
2 _
T 31y (19)
X=-8yQ>—Q (20)
k= 2 't — %QZ - 3794 (21)
] 2
2= ri (22)
1
With
- %
Q= 4y (23)
With these parameters, we find that the complete solitary wave solution for Eq. (1) can be written in the form
V5. .
E(x,t) =< — sz +ip sec h[n(t — xx)] pexpli(kx — Q t)] (24)
and its intensity is given by
2
V5
Ex, )] = [— 4 P+ psechln(t = x)] (25)

Bases on the above conditions, we find that the solution (17) exists provided thatr; >0, r) =r5 = Oandy > — 3a§ /4.
Additionally, Eq. (23) together with the condition a4 + as = 0 require self-steepening and self-frequency shift coefficients
must satisfy rg + r; = (3ry + 4r3—r4)/6. Note that the wave parameter p is directly proportional to the width 7, and depends
only on the coefficient ry [see Eq. (22)].

Fig. 2(a) shows the intensity profile of the solitary wave solution as computed from Eq. (25) for the parameter values
p =n = landy = 0.1, while Fig. 2(b) depicts its evolution. Unlike the first case, we see that the intensity profile of the wave
takes the shape of W. It is worth noting that this type of solitary wave solutions has first been found for a higher-order NLS
equation with third-order dispersions, self steepening, and self-frequency shift effects by Li et al. [25].

3.3. Case 3

When a4 — 3as = 0and a; = ag = a1 = 0, one can find a solitary wave solution of Eq. (3) of the form
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Fig. 2. (a) Intensity of the solitary wave profile |E(0, t)\2| as a function of t and its (b) evolution as computed from Eq. (25) for the values p =n =1 andy = 0.1.

A(x,t) = Atanh[n(t — xx)] + ipsech[n(t — xx)] (26)
which means that § = 0 in the ansatz solution (4). Then, from Egs. (7a)-(7k), we can obtain the following expressions:
2 /- 2 (1 142 + p2) 18yn* (3/12 + pz) 5 2as (Az - pz)
a1:X+7(2)\ +p2)7a2: 5 ,a3 = 536 = A"03,3g = ———5—5—", 010
3 e —p? 222 3n
p
2 2
_ 48yn g = 127 7 (27)
22— p2 12— p2
which yield the solitary wave parameters:
2 Tafo2 2
=5 (p A ) (28)
X = —0+ 30502 + 4703 + %4 (a3 +410) (22 + p?) (29)
1, 3 4 V520 5 2
k=50 + 030> +70* - 542 (p +34 ) (30)
2 _ 22+ 9rq + 6430 [22(r7—T6) — 9] + 2y1,Q% 31)
8yrs '
12 _ 24 314+ 6030 [2(7 1) — 3r4] - 26yr,Q? (32)
8yrs
With
-~ (24T7 + T'4)0(3
="sm, (33)
Therefore, we found the solution for Eq. (1) as
E(x,t) = {Atanh[n(t — xx)] + ipsech[n(t — xx)]texp[i(kx — Q t)] (34)
whose intensity is
E(x, 07 =2+ (0 = 2% ) sech?n(t — x0)] (35)

For this case, we must have r; =r3 =15 =0 for the solution (34) to exist. Now from Eq. (33) and the condition
a4 — 3as = 0, we can find another restriction on the model parameters as 33r4(6r; — 1g) = (3r4 — 413)(24r7 +14).

From Eq. (28), it is clear to see that if r4 <0(>0), one must require p2 — 2s0 (<0), and the solution (34) represents a
brightlike (darklike) solitary wave. Here we consider the special case of r4 >0 and p% — 2 <0.In Fig. 3(a), we have presented
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Fig. 3. (a) Intensity of the solitary wave profile |E(0, t)\z\ as a function of t and its (b) evolution as computed from Eq. (35) for the values p=9=1, A=+2
andy = 0.1.

the intensity profile of the above solitary wave using the values p = n = 1, A = v/2, andy = 0.1, while Fig. 3(b) depicts its
evolution. We can see that this solution describes the propagation of a gray solitary pulse (dark wave with nonzero minimum
intensity) on a continuous-wave background, which does not change during the propagation distance as shown in Fig. 3(b).

4. Conclusion

In conclusion, we have considered an extended NLS equation with third- and fourth-order dispersion terms for describing
ultrashort pulse propagation in highly dispersive media. Exact solitary wave solutions of the model have been derived using
an ansatz method. The resulting solutions are in the form of bright, dark and W-shaped solitary waves. We have also pre-
sented the necessary conditions on material parameters for the formation of these localized structures. Considering the utility
of the equation in fiber optics and other branches of physics, these solutions may find practical applications.

Future research may include a systematic study of the stability of the solitary waves presented here under the influence of
finite perturbations by employing the numerical simulation methods. It would be also especially relevant to consider the
same envelope equation but including distributed parameters to investigate femtosecond optical pulse propagation in
inhomogeneous fiber media. Such studies are currently in progress and will be reported in future publications.
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