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a b s t r a c t 

We investigate a generalized nonlinear Schrödinger equation with higher-order effects such as pseudo- 

quintic nonlinearity and self-steepening effect. The model applies to the description of ultrashort pulse 

propagation in nonlinear materials exhibiting a negative index of refraction. Three new types of non- 

linearly chirped W -shaped soliton solutions are derived for the first time by using the traveling-wave 

method. The obtained structures have new functional forms that are distinct from the usual W-shaped 

soliton solution reported within the context of optical fibers. An important characteristic of these enve- 

lope solitons is the nonlinear chirp that is directly proportional to the intensity of the pulse. It is shown 

that these chirped W -shaped structures are formed as a result of the exact balance among the group 

velocity dispersion, the self-steepening effect, and the pseudo-quintic nonlinearity. Exact chirped bright 

soliton solutions of the model were also obtained under appropriate conditions. Our results may raise 

the possibility of some experiments and potential applications related to left-handed materials in the 

presence of self-steepening nonlinearity. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Ultrashort pulses propagation in optical fibers has been widely

tudied in recent years due to its numerous applications in

elecommunication and ultrafast signal routing systems [1] . The

ubic nonlinear Schrö dinger equation (NLSE) is the generic non-

inear equation model that describes the evolution of a picosecond

ptical pulse in monomode optical fibers, within the slowly vary-

ng envelope approximation. An important property of this model

s its complete integrability by means of the inverse scattering

ransform (IST) [2] , with the soliton–a localized optical pulse–one

he fundamental solutions. Early works mostly concentrated on the

edia with Kerr nonlinearity, where the refractive index varies lin-

arly with the pulse intensity as [3] : n = n 0 + n 2 I, with n 0 being

he linear refractive index, n 2 is the coefficient for the nonlinear

ndex, and I is the intensity of the light field. Such uniform Kerr

onlinear media exhibit stable fundamental (single-hump) solitons
∗ Corresponding author. 
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n one spatial dimension [4–6] and collapse in two and three spa-

ial dimensions [7,8] . 

Later works focused on the dynamics of femtosecond pulses in

ptical fibers ( ≤ 100 fs), for which the standard NLSE becomes not

alid. The spectral width of these pulses becomes comparable with

he carrier frequency and additional effects should be taken into

ccount [9] . Accordingly, the governing equation should still in-

lude higher-order effects such as the third-order dispersion, self-

teepening, delayed nonlinear response, quintic nonlinearity, etc.

hese effects may add new properties to the wave propagation

henomena and also change the physical features and the stability

f the NLS soliton. Recently, a kind of NLSE called generalized NLSE

s presented and used to describe the propagation of ultrashort

ulses in a negative index material [10] . This new wave equation

ncludes correction terms that appear during the propagation of

ulses at least a few tens of optical cycles in duration, such as the

seudo-quintic nonlinearity and self-steepening term. Such model

as become an important theoretical tool in recent investigations

here interesting nonlinear phenomena have been studied in the

ontext of negative index materials [10–13] . 

https://doi.org/10.1016/j.chaos.2019.04.003
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Many novel localized structures, referred to as higher-order

(multihump) solitons, have been recently demonstrated experi-

mentally and theoretically in both one- and two-dimensional non-

linear media. Such phenomena include (but are not limited to)

dipole solitons (consisting of two peaks) [15–18] , multipoles (fea-

turing multiple peaks) [19] , W -shaped solitons [20] , and so on.

These nonfundamental soliton structures have the potential to be

used as carriers and conduits for data transmission and processing,

in the context of all-optical schemes [21] . 

A particularly interesting type of envelope is the so-called W -

shaped kind of soliton, which was first reported in an optical fiber

medium with higher-order effects [20] , and obtained later in a

variety of higher-order NLSEs [22,23] . To be specific, this type of

pulse shape possesses one hump and two valleys on the hump’s

two sides. When compared with the fundamental bright and dark

solitons, the occurrence of this kind of soliton in nonlinear op-

tics is relatively rare. Nevertheless, all W -shaped soliton structures

encountered so far analytically in nonlinear fiber media [20–23] ,

were found to be chirp-free and have a functional form expressed

in term of the secant hyperbolic function plus a constant back-

ground field [see Eq. (33) in Ref. [20] ]. 

In recent years, much attention has been drawn toward enve-

lope soliton pulses with nonlinear chirp [24–29] , due to their ex-

tensive applications to the design of fiber-optic amplifiers, optical

pulse compressors, and solitary-wave-based communications links

[30,31] . Usually, the chirped soliton’s dynamics is described by

the NLS family of equations, which incorporates additional higher-

order nonlinear effects to the cubic model. 

To the best of our knowledge, the propagation characteristics of

nonlinearly chirped W -shaped soliton pulses in negative index ma-

terials have not been previously studied. In this paper, we present

three new types of chirped W -shaped soliton solutions, other than

the one reported within the context of optical fibers [20] , to the

generalized NLSE governing the pulse propagation in such systems.

We also show that a variety of chirped bright soliton solutions can

exists for the equation considered, illustrating the potentially rich

set of chirped structures in negative index materials. 

The arrangement of the paper is as follows. The generalized

nonlinear Schr ödinger equation (GNLSE) for femtosecond pulses

propagating in negative index materials will be cited in Section 2 .

In Section 3 , the specific chirp ansatz is assumed and the nonlin-

ear differential equation that governs dynamics of field amplitude

is derived by using the traveling-wave method. A rich variety of

exact nonlinearly chirped W -shaped soliton solutions is presented

in Section 4 together with the nonlinear chirp associated with each

of these optical pulses. In addition, novel chirped bright soliton so-

lutions will be also given under certain parametric conditions. The

paper is concluded in Section 5 by a short summary and discus-

sion. 

2. Theoretical model 

We study the propagation of ultrashort pulses in negative index

materials with higher-order effects such as pseudoquintic nonlin-

earity and self-steepening effect. The evolution of the pulse enve-

lope is governed by the following GNLSE [10,11] 

iψ ξ + 

k 

2 

ψ ττ + iσ
(| ψ | 2 ψ 

)
τ

+ ρ| ψ | 2 ψ + 3 δ| ψ | 4 ψ = 0 , (1)

where ψ( ξ , τ ) represents the complex envelope of the elec-

tric field, τ = ct/λp and ξ = z/λp are the respective normalized

time and propagation distance, where λp is the plasma wave-

length, and k, σ , ρ , and δ are the real parameters related to

group velocity dispersion (GVD), self-steepening, cubic nonlinear-

ity, and pseudo-quintic nonlinearity, respectively. These param-

eters are defined as [10,11] : k = 

1 
βn 

[ 
1 

V 2 g 
− αγ − β εγ ′ + μα′ 

4 π

] 
, σ =
χ(3) 
[ 

μ
2 V g n 2 

− γ + μ
2 n 

] 
, ρ = 

βμχ(3) 

2 n , and δ = −β
(
μχ(3) 

)2 

24 n 3 
. Here V g =

2 n 
εγ + μα , β = 2 π˜ ω = 

2 πω 
ω p 

with ω p is the plasma frequency, α =
∂ [ ̃  ω ε( ̃  ω ) ] 

∂ ̃  ω 
, α′ = 

∂ 2 [ ̃  ω ε( ̃  ω ) ] 
∂ ̃  ω 2 

, γ = 

∂ [ ̃  ω μ( ̃  ω ) ] 
∂ ̃  ω 

, and γ ′ = 

∂ 2 [ ̃  ω μ( ̃  ω ) ] 
∂ ̃  ω 2 

, where

denotes dielectric susceptibility, μ is the magnetic permeabil-

ty, n is the refractive index, χ (3) is the third order susceptibility

f the medium, V g is the group velocity, and 

˜ ω is the normalized

requency. 

For the particular case σ = δ = 0 , the model Eq. (1) reduces to

he standard NLSE which has only the terms describing lowest or-

er dispersion and self-phase modulation. If δ = 0 , Eq. (1) becomes

he derivative NLSE modeling the propagation of NLS soliton in the

resence of Kerr dispersion [32] . 

With higher-order terms, Eq. (1) has been recently studied

y many authors. Marklund et al. [12] examined the modula-

ional instability and localization of an ultrashort electromagnetic

ulse that is governed by this nonlinear Schrödinger type equa-

ion. Zhang and Yi [11] found the exact chirped bright soliton

olutions by using a variable parametric method. Additionally,

aoui et al. [13] obtained bright and double-kinked quasi-soliton

olutions with nonlinear chirp by employing the traveling-wave

ethod. Moreover, Yang et al. [14] have reported the existence of

uasi-soliton solutions for Eq. (1) under the condition σ = 0 . How-

ver, the exact nonlinearly chirped W -shaped soliton solutions of

his model in the presence of all the physical effects have not been

eported yet. How to find the exact and new-type solutions having

he shape of W which are characterized by a nonlinear chirp is an

nteresting work. Such an attempt appears in what follows. 

. The traveling–wave method and amplitude equation 

We are interested to find the exact chirped soliton solutions for

q. (1) . To do so we put the complex field ψ( ξ , τ ) in the traveling-

ave form [25,28] 

 ( ξ , τ ) = u ( ζ ) e i �( ξ ,τ ) , (2)

ith the phase shift �( ξ , τ ) as [11] 

( ξ , τ ) = Eτ + F ξ + φ( ζ ) (3)

here ζ = κτ + λξ is the traveling coordinate. Here κ , λ, E , and

 are all real parameters. Also φ( ζ ) denotes a possible nonlinear

hase shift which is a real function of ζ . It is worth mentioning

hat φ is a constant parameter for the standard NLSE, while it be-

omes a nonlinear function of the retarded coordinates ξ and τ in

he presence of higher-order terms [11] . 

Then, the envelope solution above acquires an extra instanta-

eous frequency shift (i.e., chirp) given by 

w ( ξ , τ ) = − ∂ 

∂τ
[ Eτ + F ξ + φ( ζ ) ] = −E − κφ′ ( ζ ) . (4)

here the prime stands for differentiation with respect to ζ . On

ubstituting Eq. (2) along with Eq. (3) in Eq. (1) and separating

eal and imaginary parts of the resulting equation, one obtains the

ollowing coupled equations: 

− 1 

2 

(
2 F + kE 2 

)
u − ( λ + kκE ) φ′ u + 

1 

2 

kκ2 u 

′′ − 1 

2 

kκ2 φ′ 2 u 

+ ( ρ − σE ) u 

3 − σκφ′ u 

3 + 3 δu 

5 = 0 , (5)

nd 

( λ + kκE ) u 

′ + 

1 

2 

kκ2 
(
uφ′′ + 2 u 

′ φ′ ) + 3 σκu 

2 u 

′ = 0 . (6)

o solve these equations, we adopt an ansatz of the form: 

′ = pu 

2 + q, (7)

here q and p are two real parameters that determine the constant

nd nonlinear chirp parameters, respectively. Inserting the ansatz
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7) into Eq. (6) , one gets relations of chirp parameters p and q as

p = − 3 σ

2 kκ
, q = − ( λ + kκE ) 

kκ2 
. (8) 

ccordingly we find that the resultant chirp (4) can be derived as

w ( ξ , τ ) = −E − κq − κ pu 2 . The later shows that the chirping ex-

ibits a nontrivial form which has an intensity dependent term

part from the linear contribution [with I = | ψ | 2 = u 2 ]. The first

elation in (8) indicates that the nonlinear chirp is strongly de-

endent on the self-steepening coefficient σ . In particular, when

= 0 , the localized pulse solutions without chirp are generated in

he negative index material. 

By means of Eqs. (7) and (8) , a nonlinear differential equation

or u ( ζ ) is readily derived from Eq. (5) , 

 

′′ + 

3 

(
σ 2 + 8 δk 

)
4 k 2 κ2 

u 

5 + 

2 [ σ ( λ + kκE ) + kκ( ρ − σE ) ] 

k 2 κ3 
u 

3 

+ 

( λ + kκE ) 
2 − kκ2 

(
2 F + kE 2 

)
k 2 κ4 

u = 0 , (9) 

his elliptic equation governs the dynamics of field amplitude as it

ropagates in the negative index material. It is well known that

his type of nonlinear differential equations admits many types

f exact solutions such as bright soliton, dark soliton, kink, dou-

le kink, and bell shaped solutions [28,33,34] . But there exist no

nown exact analytical soliton solutions with the shape of W to

q. (9) in the literature. Here, for the first time to our knowledge,

e present new types of exact W -shaped soliton solutions to this

lliptic equation. These solutions may play an important role in un-

erstanding the complicated physical phenomena in negative index

aterials. 

First let us rewrite the preceding equation in a more simplified

orm. Multiplying Eq. (9) by u ζ and integrating with respect to ζ ,

e get 

u 

′ )2 + 

(
σ 2 + 8 δk 

)
4 k 2 κ2 

u 

6 + 

σ ( λ + kκE ) + kκ( ρ − σE ) 

k 2 κ3 
u 

4 

+ 

( λ + kκE ) 
2 − kκ2 

(
2 F + kE 2 

)
k 2 κ4 

u 

2 + 2 E = 0 , (10) 

here E is an arbitrary constant of integration, which coincides

ith the energy of the anharmonic oscillator [35,36] . Introduction

f the change of variable u 2 = v in Eq. (10) leads to the following

ew elliptic equation: 

 

′′ + 

2 

(
σ 2 + 8 δk 

)
k 2 κ2 

v 3 + 

6 [ σ ( λ + kκE ) + kκ( ρ − σE ) ] 

k 2 κ3 
v 2 

+ 

4 

[
( λ + kκE ) 

2 − kκ2 
(
2 F + kE 2 

)]
k 2 κ4 

v + 4 E = 0 , (11) 

ntegrating Eq. (11) for different values of E, we get the intensity

unction v ( ζ ). This waveform when it exists can be substituted in

2) to get the exact chirped solution of the GNLSE given in (1) as

 ( ξ , τ ) = v 1 / 2 exp [ i ( Eτ + F ξ ) + iφ( ζ ) ] , (12) 

here the phase variable φ can be obtained from integrating

7) with respect to ζ as 

= − ( λ + kκE ) 

kκ2 
( κτ + λξ ) − 3 σ

2 kκ

∫ κτ+ λξ

v dζ + φ0 . (13) 

ith φ0 being a constant phase. 

Based on the preceding results, we also find that the associated

hirp can be expressed in term of v as 

w ( ξ , τ ) = −E + 

( λ + kκE ) 

kκ
+ 

3 σ

2 k 
v . (14)
q. (12) together with the relations (13) and (14) are the central

heoretical results representing the general form of exact nonlin-

arly chirped solutions for the GNLSE (1) and their associated non-

inear chirp. If one can determine the functions v ( ζ ) from the non-

inear differential equation (11) , then we can construct the chirped

olutions of the model considered and find their corresponding

hirping based on the general wave form (12) and expression (14) .

n the following, based on solving the nonlinear differential equa-

ion above, we mainly discuss novel chirped localized solutions for

q. (1) that are firstly reported in this paper. 

. Novel chirped W -shaped soliton solutions 

In this section, we present three new types of exact solutions of

he GNLSE (1) that describe nonlinearly chirped W -shaped soliton

ropagation with a pronounced platform underneath it. 

.1. First chirped W -shaped soliton solution 

The first solution we have found for Eq. (11) reads 

 ( ζ ) = A 

[ 
1 − 3 

2 

sech 

2 
( μζ ) 

] 
, (15) 

hich is obtained when choosing a zero value of energy ( E = 0 ).

he amplitude and width of the pulse are defined by 

A = −
2 

[
( λ + kκE ) 

2 − kκ2 
(
2 F + kE 2 

)]
3 κ[ σ ( λ + kκE ) + kκ( ρ − σE ) ] 

, (16) 

μ2 = 

( λ + kκE ) 
2 − kκ2 

(
2 F + kE 2 

)
k 2 κ4 

, (17) 

or the relevant constraint condition: 

= −σ 2 

8 k 
. (18) 

aking use of all these findings, we can present the chirped soli-

on solution of Eq. (1) as 

ψ ( ξ , τ ) = 

[ 

−
2 

[
( λ + kκE ) 

2 − kκ2 
(
2 F + kE 2 

)]
3 κ[ σ ( λ + kκE ) + kκ( ρ − σE ) ] { 

1 −3 

2 

sech 

2 

[ 

√ 

( λ+ kκE ) 
2 −kκ2 

(
2 F + kE 2 

)
k 2 κ4 

( κτ+ λξ ) 

] } ] 1 / 2 

× exp [ i ( Eτ + F ξ + φ( ζ ) ) ] , (19) 

rovided that ( λ + kκE ) 
2 − kκ2 

(
2 F + kE 2 

)
> 0 and κ[ σ ( λ + kκE ) 

+ kκ( ρ − σE ) ] < 0 in order to ensure the pulse width and ampli-

ude to be real. 

The associated chirp can be obtained readily as 

w ( ξ , τ ) = −E + 

( λ + kκE ) 

kκ
−

σ
[
( λ + kκE ) 

2 − kκ2 
(
2 F + kE 2 

)]
kκ[ σ ( λ + kκE ) + kκ( ρ − σE ) ] [ 

1 − 3 

2 

sech 

2 
( μζ ) 

] 
. (20) 

s it can be seen, the existence of this nonlinearly chirped solu-

ion requires the condition (18) to be satisfied, which shows a sub-

le balance among the GVD term, pseudo-quintic nonlinearity, and

elf-steepening effect. Physically, this requirement implies that the

resent solution (19) can exist in abnormal (normal) dispersion for

elf-focusing (defocusing) nonlinearity. This is different from that

n ordinary materials. It is worthy to mention that in a negative

ndex material, the sign of GVD can be positive or negative and

elf-steepening characterizes the front of the pulse, different from

he case of ordinary materials [10] . 
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Fig. 1 (a) shows the propagation of the chirped solution (19) in

the presence of higher-order effects. Here we have taken the fol-

lowing values for the model parameters [14] : k = −0 . 7954 , ρ =
1 . 2566 × 10 −10 , and δ = 0 . 6983 × 10 −21 . To satisfy the parametric

condition (18) , we set σ = 0 . 6 6 6 6 × 10 −10 . The other parameters

are chosen as κ = 1 , λ = − 1 
8 , E = −2 . 0423 and F = 

1 
2 . From this

figure, one can clearly see that the chirped soliton pulse takes the

shape of W with a pronounced platform underneath. The chirp-

ing profile for this W -shaped structure is shown in Fig. 1 (b) (for

ξ = 0) . One can see that this chirp is localized in time and has a

maximum at the center of the pulse. 

On the contrary, if ( λ + kκE ) 
2 − kκ2 

(
2 F + kE 2 

)
< 0 and

κ[ σ ( λ + kκE ) + kκ( ρ − σE ) ] > 0 , one can obtain an exact an-

alytical solution to Eq. (1) representing nonlinearly chirped bright

solitons in the form 

ψ ( ξ , τ ) = 

√ 

kκ2 
(
2 F + kE 2 

)
− ( λ + kκE ) 

2 

κ[ σ ( λ + kκE ) + kκ( ρ − σE ) ] 

sech 

[ 

√ 

kκ2 
(
2 F + kE 2 

)
− ( λ + kκE ) 

2 

k 2 κ4 
( κτ + λξ ) 

] 

× exp [ i ( Eτ + F ξ + φ( ζ ) ) ] , (21)

The corresponding chirping is given by 

δw ( ξ , τ ) = −E + 

( λ+ kκE ) 

kκ
−

3 σ
[
kκ2 

(
2 F + kE 2 

)
−( λ+ kκE ) 

2 
]

2 kκ[ σ ( λ+ kκE ) + kκ( ρ−σE ) ] 

sech 

2 

[ 

√ 

kκ2 
(
2 F + kE 2 

)
− ( λ+ kκE ) 

2 

k 2 κ4 
( κτ+ λξ ) 

] 

. (22)

As it can be seen, the chirped bright soliton above has the same

sech -profile as the one for the cubic NLSE, except the chirping will

show a nonlinear behavior. 

For the sake of completeness we now discuss an important

particular case when λ + kκE = 0 and 2 F + kE 2 = kκ2 . Taking this

limit, we can further reduce the envelope function solution (21) to

the waveform 

ψ ( ξ , τ ) = κ

√ 

k 

ρ − σE 
sech ( κτ + λξ ) e i [ Eτ+ F ξ+ φ( ζ ) ] , (23)

with k ( ρ − σE ) > 0 . In this solution, the phase modification φ( ζ )

can be determined by using (13) and (23) as 

φ = − 3 σκ

2 ( ρ − σE ) 
tanh ( κτ + λξ ) + φ0 , (24)

while the associated chirp shown in Eq. (22) can be significantly

simplified to 

δw ( ξ , τ ) = −E − 3 σκ2 

2 ( ρ − σE ) 
sech 

2 
( κτ + λξ ) . (25)

The chirped bright solution (23) with (24) and its associated chirp

(25) is exactly the form of the solution derived by Zhang and Yi

[11] under the same parametric condition (18) by adopting another

methodology [see Eqs. (18) and (19) in Ref. [11] ]. We can conclude

that our bright solution (21) and its associated chirp (22) gener-

alize the earlier reported results [11] to the case of λ + kκE � = 0

and 2 F + kE 2 � = kκ2 . Because of the appearance of several parame-

ters related to the amplitude and width of the solution (21) , this

provides a possible way to tune experimentally the chirped soliton

pulse by choosing different values of them. 
.2. Second chirped W -shaped soliton solution 

We now present a different interesting exact soliton solution for

q. (11) . This solution is of the form 

 ( ζ ) = λ

[
1 − 3 sech ( ηζ ) 

1 + sech ( ηζ ) 

]
, (26)

here 

λ = −
2 

[
( λ + kκE ) 

2 − kκ2 
(
2 F + kE 2 

)]
3 κ[ σ ( λ + kκE ) + kκ( ρ − σE ) ] 

, (27)

η2 = 

4 

[
( λ + kκE ) 

2 − kκ2 
(
2 F + kE 2 

)]
k 2 κ4 

. (28)

nder the same constraint stated in (18) . Here, the value of energy

is also chosen equal to zero. Combining Eqs. (12) and (26) with

27) and (28) , we find that the chirped solution of Eq. (1) can be

ritten as 

 ( ξ , τ ) = 

[ 

−
2 

[
( λ + kκE ) 

2 − kκ2 
(
2 F + kE 2 

)]
3 κ[ σ ( λ + kκE ) + kκ( ρ − σE ) ] {

1 − 3 sech [ η( κτ + λξ ) ] 

1 + sech [ η( κτ + λξ ) ] 

}]1 / 2 

e i [ Eτ+ F ξ+ φ( ζ ) ] , (29)

rovided that ( λ + kκE ) 
2 − kκ2 

(
2 F + kE 2 

)
> 0 and κ[ σ ( λ + kκE ) 

+ kκ( ρ − σE ) ] < 0 . Correspondingly, the chirping reads 

w ( ξ , τ ) = −E + 

( λ + kκE ) 

kκ
−

σ
[
( λ + kκE ) 

2 − kκ2 
(
2 F + kE 2 

)]
kκ[ σ ( λ + kκE ) + kκ( ρ − σE ) ] [

1 − 3 sech ( ηζ ) 

1 + sech ( ηζ ) 

]
. (30)

ig. 2 (a) depicts the evolution behavior of the chirped solution

29) for the same values of parameters as in Fig. 1 . From it, one can

learly see that this solution presents a W -shaped soliton wave.

he corresponding chirping for this structure is shown in Fig. 2 (b)

for ξ = 0 ). One can see that the chirp has a maximum at the

enter of the pulse and it saturates at the same finite value as

→ ±∞ . 

In the opposite limit, when ( λ + kκE ) 
2 − kκ2 

(
2 F + kE 2 

)
< 0 and

[ σ ( λ + kκE ) + kκ( ρ − σE ) ] > 0 , one can obtain an exact chirped

right soliton solution to Eq. (1) of the form 

 ( ξ , τ ) = 

[ 

2 
[
kκ2 

(
2 F + kE 2 

)
− ( λ + kκE ) 

2 
]

κ[ σ ( λ + kκE ) + kκ( ρ − σE ) ] 

sech [ η( κτ + λξ ) ] 

1 + sech [ η( κτ + λξ ) ] 

] 1 / 2 

e i [ Eτ+ F ξ+ φ( ζ ) ] . (31)

ith the parameter η as follows: 

2 = 

4 
[
kκ2 

(
2 F + kE 2 

)
− ( λ + kκE ) 

2 
]

k 2 κ4 
. (32)

or this case, the associated chirp takes the form 

w ( ξ , τ ) = −E + 

( λ+ kκE ) 

kκ
−

3 σ
[
( λ + kκE ) 

2 − kκ2 
(
2 F + kE 2 

)]
kκ[ σ ( λ+ kκE ) + kκ( ρ−σE ) ] 

sech ( ηζ ) 

1 + sech ( ηζ ) 
. 

(33)

.3. Third chirped W -shaped soliton solution 

We find that Eq. (11) possesses another exact soliton solution

f the form 

 ( ζ ) = B 

[ 

1 − 12 sech 

2 
( sζ ) 

4 −[ 1 − tanh ( sζ ) ] 
2 
+ 

24 sech 

4 ( sζ ) (
4 −[ 1 − tanh ( sζ ) ] 

2 
)2 

] 

, (34)
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Fig. 1. (a) Evolution of intensity wave profile of the W -shaped soliton pulse as computed from (19) of Eq. (1) and (b) profile of chirping given by Eq. (20) . Here we have used 

the parameters values k = −0 . 7954 , ρ = 1 . 2566 × 10 −10 , δ = 0 . 6983 × 10 −21 , σ = 0 . 6666 × 10 −10 , κ = 1 , λ = − 1 
8 
, E = −2 . 0423 and F = 

1 
2 
. The soliton intensity is normalized 

by | ψ( ξ , τ )| 2 / A . 

Fig. 2. (a) Evolution of intensity wave profile of the W -shaped soliton pulse as computed from (29) of Eq. (1) and (b) profile of chirping given by Eq. (30) . Here we have 

used the same values of parameters as in Fig. 1 . The soliton intensity is normalized by | ψ( ξ , τ )| 2 / λ. 
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(  

s

here 

B = −
2 

[
( λ + kκE ) 

2 − kκ2 
(
2 F + kE 2 

)]
3 κ[ σ ( λ + kκE ) + kκ( ρ − σE ) ] 

, (35) 

s 2 = 

( λ + kκE ) 
2 − kκ2 

(
2 F + kE 2 

)
k 2 κ4 

, (36) 

nder the special condition (18) . Here, we also choose the energy

as a zero value. Thus, the complete chirped soliton solution to

q. (1) can be written as 

 ( ξ , τ ) = 

[
B 

{
1 − 12 sech 

2 
[ s ( κτ + λξ ) ] 

4 − [ 1 − tanh [ s ( κτ + λξ ) ] ] 
2 

+ 

24 sech 

4 
[ s ( κτ+ λξ ) ] (

4 −[ 1 − tanh [ s ( κτ+ λξ ) ] ] 
2 
)2 

} ] 1 / 2 

e i [ Eτ+ F ξ+ φ( ζ ) ] . 

(37) 
rovided that ( λ + kκE ) 
2 − kκ2 

(
2 F + kE 2 

)
> 0 and κ[ σ (λ +

κE) + kκ(ρ − σE)] < 0 to ensure the width s and amplitude B of

he pulse to be real. 

The corresponding chirping will be of the form 

w ( ξ , τ ) = −E + 

( λ + kκE ) 

kκ
+ 

3 σB 

2 k 

[
1 − 12 sech 

2 
( sζ ) 

4 − [ 1 − tanh ( sζ ) ] 
2 

+ 

24 sech 

4 
( sζ ) (

4 − [ 1 − tanh ( sζ ) ] 
2 
)2 

] 

. (38) 

ig. 3 (a) illustrates the nonlinear evolution behavior of the chirped

olution (37) for the same values of parameters as in Fig. 1 . As one

an see, this solution represents a W -shaped pulse that propagates

n the metamaterial in the presence of higher-order effects. The

hirp associated with this nonlinear structure is shown in Fig. 3 (b)

for ξ = 0 ), which has a minimum at the center of the pulse and

aturates at the same finite value as τ → ±∞ . 
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Fig. 3. (a) Evolution of intensity wave profile of the W -shaped soliton pulse as computed from (37) of Eq. (1) and (b) profile of chirping given by Eq. (38) . Here we have 

used the same values of parameters as in Figs. 1 and 2 . The soliton intensity is normalized by | ψ( ξ , τ )| 2 / B . 
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On the contrary, when ( λ + kκE ) 
2 − kκ2 

(
2 F + kE 2 

)
< 0 and

κ[ σ ( λ + kκE ) + kκ( ρ − σE ) ] > 0 , we can obtain an exact chirped

bright soliton solution to Eq. (1) of the form 

ψ ( ξ , τ ) = 

[ 

8 

[
kκ2 

(
2 F + kE 2 

)
− ( λ + kκE ) 

2 
]

κ[ σ ( λ + kκE ) + kκ( ρ − σE ) ] {
sech 

2 
[ s ( κτ + λξ ) ] 

4 − [ 1 − tanh [ s ( κτ + λξ ) ] ] 
2 

− 2 sech 

4 
[ s ( κτ + λξ ) ] (

4 − [ 1 − tanh [ s ( κτ + λξ ) ] ] 
2 
)2 

} ] 1 / 2 

× exp [ i ( Eτ + F ξ + φ( ζ ) ) ] , (39)

with the following parameter: 

s 2 = 

kκ2 
(
2 F + kE 2 

)
− ( λ + kκE ) 

2 

k 2 κ4 
. 

For this case, the chirping can be written as 

δw ( ξ , τ ) = −E + 

( λ+ kκE ) 

kκ
+ 

12 σ
[
kκ2 

(
2 F + kE 2 

)
−( λ+ kκE ) 

2 
]

kκ[ σ ( λ+ kκE ) + kκ( ρ − σE ) ] 

×
{

sech 

2 
[ s ( κτ + λξ ) ] 

4 − [ 1 − tanh [ s ( κτ + λξ ) ] ] 
2 

− 2 sech 

4 
[ s ( κτ + λξ ) ] (

4 − [ 1 − tanh [ s ( κτ + λξ ) ] ] 
2 
)2 

} 

. (40)

Remarkably, the nonlinearly chirped structures above exhibit spe-

cific functional forms, which differ from the usual W -shaped solu-

tion reported in Ref. [20] . Stability of these privileged exact chirped

solutions against small perturbations, such as amplitude perturba-

tion, random noises and the slight violation of the parametric con-

ditions, is a crucial issue as it is linked with the experimental ob-

servation of them. It is relevant to mention that only stable (or

weakly unstable) solitary waves can be observed experimentally

[37] . This analysis can be done by the linear stability theory and

numerical simulations of the solutions with perturbations initially

implanted. However, a detailed analysis of the stability of these

chirped solutions is beyond the scope of this work. 
. Conclusions 

To conclude, for the first time, we derived three new types of

onlinearly chirped W -shaped soliton solutions in negative index

aterials exhibiting higher-order effects such as pseudo-quintic

onlinearity and self-steepening effect. These chirped nonlinear

tructures have been derived under a specific condition between

he material parameters by using the traveling-wave method. In-

erestingly, the newly found chirped soliton pulses possess a func-

ional form which is different from the one reported in the set-

ing of optical fibers. It is shown that the chirp associated with

ach of these soliton pulses has a nontrivial form which includes

n intensity dependent chirping term apart from the linear con-

ribution. The various nonlinearly chirped bright soliton solutions

ave also been determined for the model considered. It is shown

hat some previously known chirped bright soliton solutions of the

asic equation can be recovered in a particular limit. The obtained

esults constitute the first analytical demonstration of propagation

f nonlinearly chirped W -shaped soliton pulses in a negative in-

ex material. These chirped solutions may further raise the pos-

ibility of some experiments and potential applications related to

eft-handed materials in the presence of pseudo-quintic nonlinear-

ty and self-steepening effect. 

For instance, these solutions which can represent bits of in-

ormation can be of particular interest in the investigation of the

ransmission properties of optical pulses in left-handed media. It is

orth to point out that, recently a mechanism of the soliton gen-

ration in nonlinear active metamaterials by means of metastruc-

ure consisting of a ring resonator formed by a microwave ampli-

er loaded with a left-handed transmission line was demonstrated

xperimentally [38] . In this setting, a variety of nonlinear effects

ncluding the generation of envelope solitons was observed. Very

ecently, Shen et al. have investigated the properties of the nonlin-

ar wave forms that arise in a nonlinear left-handed transmission

ine [39] . They have found that bright and dark solitons can prop-

gate undistorted over a long propagation distance in such left-

anded transmission lines, in the case of effectively self-focusing

nd self-defocusing nonlinearities, respectively. The obtained so-

utions will also be useful for the study of soliton interactions in

eft-handed media under the influence of perturbations. Moreover,

hirped pulses possess extensive applications in pulse compression
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r amplification, and thus they are particularly useful in the de-

ign of fiber optic amplifiers, optical pulse compressors and soli-

ary wave-based communications links [28,30,31] . We would like

o mention that in the present system, the self-steepening effect is

ssential for the soliton wave packets to exhibit a nonlinear chirp,

hile the role of the fifth-order nonlinearity can be essential for

he physical features and the stability of optical soliton propaga-

ion. 

It would be particularly relevant to extend the analysis devel-

ped here to more general situations, which concern the propa-

ation of W-shaped solitons in an inhomogeneous negative index

aterial. In this case, the variable-coefficient GNLSE gives a suit-

ble description of soliton dynamics, in which the physical param-

ters are dependent on the propagation distance. Different from

he nonlinear evolution equations with constant coefficients, the

tudy of W -shaped solitons in variable-coefficient ones is more

omplicated and can show some novel features. It is relevant to

ention that, in realistic systems, no media is homogeneous due

o the existence of some nonuniformities which often lead to inho-

ogeneous effects such variable dispersion and nonlinearity. Stud-

es of the existence and stability properties of nonlinearly chirped

-shaped solitons in negative index materials within the context

f the present model with distributed coefficients will be deferred

o future work. 
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