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Abstract Phase-shift controlling can attenuate the
interactions between solitons and gives practical
advantage in optical communication systems. For the
variable-coefficient nonlinear Schrödinger equation,
which can be imitated the transmission of solitons in
the dispersion-decreasing fiber, analytic three solitons
solutions are derived via the Hirota method. Based on
the obtained solutions, influences of the second-order
dispersion parameters and other related parameters in
different function types on the soliton transmission
are discussed. Results declare that phase-shift control-
ling of solitons in dispersion-decreasing fiber can be
achieved when the dispersion function is Gaussian one.
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In addition, by adjusting the constraint value, propaga-
tion distance of solitons can be further extended. This
may be useful in the optical logic devices and ultra-
short pulse lasers.
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1 Introduction

Optical solitons, which can be stably transmitted by
virtue of the offset about the group velocity disper-
sion (GVD) and self-phase modulation (SPM), have
induced substantial interests of researchers in math-
ematics, physics and optics [1–24]. In particular, the
nonlinearity and integrability in the solitons equation
are widely concerned [25–28]. Under ideal conditions,
solitons can achieve lossless transmission [29]. How-
ever,when two- ormulti-solitons are transmitted simul-
taneously in the optical fiber, these solitons can attract
each other [29–31]. Due to the existence of solitary
interactions, which causes transmission rate of the opti-
cal communication system to be seriously degraded,
studying how tominimize the interactions becomes one
of the meaningful directions [32,33].

Phase-shift controlling, which contributes to an
approach for the question mentioned above, has been
investigated widely in theory and experiment [34,35].
Ref. [34] has researched large phase shift of solitons in
lead glass under strong nonlocal space. Furthermore,
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the phase shifts and trajectories during the overtak-
ing interaction of multi-solitons have been analyzed
in Ref. [35]. The propagation of three solitons in the
dispersion-decreasing fiber (DDF) can be explained
by the nonlinear Schrödinger (NLS) equation as fol-
lows [36,37]:

φξ − i
D(ξ)

2
φττ + iρ(ξ)|φ|2φ = g(ξ)φ. (1)

Here, φ is complex function with ξ and τ representing
scaled distance and time. D(ξ) is the GVD parame-
ter, ρ(ξ) is the Kerr nonlinear parameter, and g(ξ) is
a parameter related to fiber loss or amplification. With
regard to Eq. (1), the formation and amplification of
solitons have been studied [38]. Interactions between
two solitons have been attenuated by phase-shift con-
trolling [36]. Besides, researches have done about how
to amplify, reshape, fission and annihilate solitons [39]
and investigated the propagation properties of optical
solitons in the DDF [40].

Comparedwith two solitons, the results of three soli-
tons on propagation and interactions are more abun-
dant. In order to better understand the phase-shift char-
acteristics of three solitons in DDF, results of interac-
tions are shown and analyzed under the GVD param-
eters with different functions in this paper. By setting
appropriate dispersion values, phase-shift controlling
of solitons in DDF can be better achieved, which is
helpful to improve the transmission quality of the sig-
nal in optical communication system. In addition, the
loss in the medium can be effectively compensated
by changing the constraint value produced by D(ξ),
ρ(ξ) and g(ξ), so that the propagation distance can be
extended.

The structure of the paper is as follows. Section 2
is arranged to get analytic three solitons solutions of
Eq. (1) through theHirotamethod. Section 3 is reserved
for analyzing interactions influences under different
value of related parameters andfinding suitable value to
weaken the interactions among three solitons. Finally,
Sect. 4 is used to compose a conclusion for this paper.

2 Bilinear forms and three solitons solutions

Using the Hirota method to introduce the dependent
variable transformation:

φ(ξ, τ ) = h(ξ, τ )

f (ξ, τ )
e
∫
g(ξ)dξ , (2)

where h(ξ, τ ) is assumed as a complex differentiable
function while f (ξ, τ ) is a real one. After calculation,
the following bilinear equations of Eq. (1) are obtained:

(2i Dξ + D(ξ)D2
τ )h · f = 0,

D(ξ)D2
τ f · f + 2ρ(ξ)e2

∫
g(ξ)dxh · h∗ = 0, (3)

where * denotes complex conjugate. There is a con-
straint relationship among D(ξ), ρ(ξ) and g(ξ):

ρ(ξ) = P
D(ξ)

e2
∫
g(ξ)dξ

. (4)

As Hirota bilinear operators, Dξ and Dτ have the fol-
lowing form:

Dm
ξ Dn

τ (a · b) =
( ∂

∂ξ
− ∂

∂ξ ′
)m( ∂

∂τ
− ∂

∂τ ′
)n

a(ξ, τ )b(ξ ′, τ ′)|ξ ′=ξ,τ ′=τ , (5)

where both ofm and n are non-negative integers, a is the
function about ξ and τ , and b is the function about ξ ′
and τ ′. To solve bilinear forms (3), h(ξ, τ ) and f (ξ, τ )

can be expanded as:

h(ξ, τ ) = εh1(ξ, τ ) + ε3h3(ξ, τ ) + ε5h5(ξ, τ ),

f (ξ, τ ) = 1 + ε2 f2(ξ, τ ) + ε4 f4(ξ, τ ) + ε6 f6(ξ, τ ).

(6)

Without affecting the generality, we can define the
value of ε as 1, and expand the bilinear forms (3) by
using expression (6). Three solitons solutions of Eq. (1)
are constructed as follows:

φ(ξ, τ ) = h1(ξ, τ ) + h3(ξ, τ ) + h5(ξ, τ )

1 + f2(ξ, τ ) + f4(ξ, τ ) + f6(ξ, τ )
e
∫
g(ξ)dξ ,

(7)

where

h1(ξ, τ ) = eθ1 + eθ2 + eθ3 ,

f2(ξ, τ ) = A1(ξ)eθ∗
1 +θ1 + A2(ξ)eθ∗

2 +θ1

+ A3(ξ)eθ∗
3 +θ1 + A4(ξ)eθ∗

1 +θ2

+ A5(ξ)eθ∗
2 +θ2 + A6(ξ)eθ∗

3 +θ2

+ A7(ξ)eθ∗
1 +θ3 + A8(ξ)eθ∗

2 +θ3

+ A9(ξ)eθ∗
3 +θ3 ,

h3(ξ, τ ) = B1(ξ)eθ∗
1 +θ1+θ2 + B2(ξ)eθ∗

2 +θ1+θ2

+ B3(ξ)eθ∗
3 +θ1+θ2 + B4(ξ)eθ∗

1 +θ1+θ3
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+ B5(ξ)eθ∗
2 +θ1+θ3 + B6(ξ)eθ∗

3 +θ1+θ3

+ B7(ξ)eθ∗
1 +θ2+θ3 + B8(ξ)eθ∗

2 +θ2+θ3

+ B9(ξ)eθ∗
3 +θ2+θ3 ,

f4(ξ, τ ) = M1(ξ)eθ∗
1 +θ∗

2 +θ1+θ2 + M2(ξ)eθ∗
1 +θ∗

3 +θ1+θ2

+ M3(ξ)eθ∗
2 +θ∗

3 +θ1+θ2 + M4(ξ)eθ∗
1 +θ∗

2 +θ1+θ3

+ M5(ξ)eθ∗
1 +θ∗

3 +θ1+θ3 + M6(ξ)eθ∗
2 +θ∗

3 +θ1+θ3

+ M7(ξ)eθ∗
1 +θ∗

2 +θ2+θ3 + M8(ξ)eθ∗
1 +θ∗

3 +θ2+θ3

+ M9(ξ)eθ∗
2 +θ∗

3 +θ2+θ3 ,

h5(ξ, τ ) = N1(ξ)eθ∗
1 +θ∗

2 +θ1+θ2+θ3 + N2(ξ)eθ∗
1 +θ∗

3 +θ1+θ2+θ3

+ N3(ξ)eθ∗
2 +θ∗

3 +θ1+θ2+θ3 ,

f6(ξ, τ ) = n(ξ)eθ∗
1 +θ∗

2 +θ∗
3 +θ1+θ2+θ3 ,

with

θi = ai1(ξ)+iai2(ξ)+(ri1 + iri2)τ + ki1 + iki2,

ai1(ξ) = −
∫

ri1ri2D(ξ)dξ,

ai2(ξ) = 1

2

∫
(r2i1 − r2i2)D(ξ)dξ(i = 1, 2, 3),

A1(ξ) = − P

4r211
, A2(ξ) = − P

w2
31

, A3(ξ) = − P

w2
32

,

A4(ξ) = − P

w2
21

, A5(ξ) = − P

4r221
, A6(ξ) = − P

w2
33

,

A7(ξ) = − P

w2
22

, A8(ξ) = − P

w2
23

, A9(ξ) = − P

4r231
,

B1(ξ) = − w2
11P

4r211w
2
21

, B2(ξ) = − w2
11P

4r221w
2
31

,

B3(ξ) = − w2
11P

w2
32w

2
33

,

B4(ξ) = − w2
12P

4r211w
2
22

, B5(ξ) = − w2
12P

w2
31w

2
23

,

B6(ξ) = − w2
12P

4r231w
2
32

,

B7(ξ) = − w2
13P

w2
21w

2
22

, B8(ξ) = − w2
13P

4r221w
2
23

,

B9(ξ) = − w2
13P

4r231w
2
33

,

M1(ξ) = J 211P
2

16r211r
2
21 J

2
12

, M2(ξ) = w2
11w

2
42P

2

4r211w
2
21w

2
32w

2
33

,

M3(ξ) = w2
11w

2
43P

2

4r221w
2
21w

2
32w

2
33

,

M4(ξ) = w2
41w

2
32P

2

4r211w
2
21w

2
22w

2
23

, M5(ξ) = J 221P
2

16r211r
2
31 J

2
22

,

M6(ξ) = w2
12w

2
43P

2

4r231w
2
31w

2
32w

2
23

,

M7(ξ) = w2
41w

2
13P

2

4r221w
2
21w

2
22w

2
23

, M8(ξ) = w2
13w

2
23P

2

4r231w
2
21w

2
33w

2
22

,

M9(ξ) = J 231P
2

16r221r
2
31 J

2
32

,

N1(ξ) = J 211w
2
12w

2
13P

2

16r211r
2
21w

2
31w

2
21w

2
22w

2
23

,

N2(ξ) = J 221w
2
11w

2
13P

2

16r211r
2
31w

2
21w

2
32w

2
33w

2
22

,

N3(ξ) = J 231w
2
11w

2
12P

2

16r221r
2
31w

2
31w

2
32w

2
33w

2
23

,

n(ξ) = − J 211 J
2
21 J

2
31P

3

64r211r
2
21r

2
31w

2
31w

2
21w

2
32w

2
33w

2
22w

2
23

,

w11 = r11 + ir12 − r21 − ir22,

w12 = r11 + ir12 − r31 − ir32,

w13 = r21 + ir22 − r31 − ir32,

w21 = r11 − ir12 + r21 + ir22,

w22 = r11 − ir12 + r31 + ir32,

w23 = r21 − ir22 + r31 + ir32,

w31 = r11 + ir12 + r21 − ir22,

w32 = r11 + ir12 + r31 − ir32,

w33 = r21 + ir22 + r31 − ir32,

w41 = r11 − ir12 − r21 + ir22,

w42 = r11 − ir12 − r31 + ir32,

w43 = r21 − ir22 − r31 + ir32,

J11 = (r11 − r21)
2 + (r12 − r22)

2,

J12 = (r11 + r21)
2 + (r12 − r22)

2,

J21 = (r11 − r31)
2 + (r12 − r32)

2,

J22 = (r11 + r31)
2 + (r12 − r32)

2,

J31 = (r21 − r31)
2 + (r22 − r32)

2,

J32 = (r21 + r31)
2 + (r22 − r32)

2.
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Fig. 1 Interactions among three solitons affected with differ-
ent profiles of D(ξ). Parameters chosen as: r11 = 2.4, r12 =
−3.1, r21 = −3, r22 = 1.8, r31 = 3.2, r32 = 5, k11 =
−1, k12 = −2, k21 = 4, k22 = 8, k31 = 4, k32 = −2, P =

−10, g(ξ) = 0.02 with a D(ξ) = −0.085; b D(ξ) = −0.07ξ ;
c D(ξ) = −0.15cos(ξ); d D(ξ) = −0.07e−ξ ; e D(ξ) =
−0.07e−ξ2

Fig. 2 Phase shift affected with the different values before
ξ2. Parameters chosen as: r11 = 2.4, r12 = −3.1, r21 =
−3, r22 = 1.8, r31 = 3.2, r32 = 5, k11 = −1, k12 = −2, k21 =

4, k22 = 8, k31 = 4, k32 = −2, P = −10, g(ξ) = 0.02 with
a D(ξ) = −0.057e−0.0054ξ2 ; b D(ξ) = −0.057e−0.076ξ2 ; c
D(ξ) = −0.057e−0.9ξ2
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3 Discussions

For solutions (7) obtained by the above process, we
choose different correlative coefficients to observe the
interactions among three solitons. Subsequently, the
degrees of interactions in different situations are ana-
lyzed. Figure 1 indicates interactions among three soli-
tons affected with different profiles of D(ξ) such as the
constant one, the linear one, the cosine one, the expo-
nential one and the Gaussian one [41]. In Fig. 1a, we
set D(ξ) = − 0.085. When there is narrow distance
between solitons, although influence on the direction
of propagation is little, sharp peaks are produced due
to the interactions. As shown in Fig. 1b and c, when

D(ξ) = − 0.07ξ and D(ξ) = − 0.15cos(ξ), the direc-
tion of the soliton propagation is obviously changed
and the amplitude of solitons is reduced at the place of
interaction especially in Fig. 1b. The attraction between
solitons which leads to the appearance of peak can be
seen clearly in Fig. 1d. Compared with above profiles,
when D(ξ) = − 0.07e−ξ2 , interactions among three
solitons are weakened distinctly because of the phase
shift of solitons in Fig. 1e. Results suggest that phase-
shift controlling of solitons in DDF can be achieved
when the dispersion profile is Gaussian.

In order to present the effect of Gaussian profile on
phase shift of solitons, we sequentially change correla-
tive coefficient in Gaussian profile by ten times nearly

Fig. 3 Phase shift affected with the different values before
e−0.076ξ2 . Parameters chosen as: r11 = 2.4, r12 = −3.1, r21 =
−3, r22 = 1.8, r31 = 3.2, r32 = 5, k11 = −1, k12 = −2, k21 =

4, k22 = 8, k31 = 4, k32 = −2, P = −10, g(ξ) = 0.02
with a D(ξ) = − 0.21e−0.076ξ2 ; b D(ξ) = −0.048e−0.076ξ2 ;
c D(ξ) = − 0.0034e−0.076ξ2

Fig. 4 Interactions among three solitons affected with the
different values of P . Parameters chosen as: D(ξ) =
−0.05e−ξ2 , r11 = 2.4, r12 = −3.1, r21 = −3, r22 = 1.8, r31 =

3.2, r32 = 5, k11 = −1, k12 = −2, k21 = 4, k22 = 8, k31 =
4, k32 = −2, g(ξ) = 0.02 with a P = −14; b P = −11; c
P = −8
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as shown in Figs. 2 and 3. With decreasing the value
before ξ2, the result of the interactions between soli-
tons shows a process from the generation of peaks to the
generation of new solitons and then to the independent
propagation inFig. 2.ComparedwithFig. 2, Fig.3 illus-
trates the same process by increasing the value before
e−0.076ξ2 . It is found that interactions of solitons can be
avoided when the value before ξ2 is 10 times or larger
than before e−ξ2 in Figs. 2 and 3. That means phase-
shift controlling can also be realized better by changing
the value before ξ2 or the value before e−ξ2 .

Besides,we adjust the value of P in expression (4) as
shown in Fig. 4. The attenuation of amplitude becomes
alleviative as P increasing, which means the loss in
optical fibers can be compensated and the propagation
distance of solitons can be improved and extended.

4 Conclusion

Phase-shift controlling of three solitons in DDF has
been mainly studied in this paper. Hirota method has
been used to obtain the analytic three solitons solu-
tions (7) forEq. (1).By comparing and analyzingdiffer-
ent values of the GVD, the phase-shift controlling has
been achieved so that the interactions among three soli-
tons can be weakened effectively by choosing a Gaus-
sian profile.Moreover, we have found that the enhance-
ment of phase-shift controlling can be prompted via
decreasing the value before ξ2 or increasing the value
before e−ξ2 . In addition, the outcome has been given
that the propagation distance of solitons can be pro-
longed by adjusting the value of P in expression (4).
Results maybe can apply in ultra-short pulse lasers and
fiber compensation systems.
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