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A B S T R A C T

In this paper, the governing model with the inclusion of parabolic law nonlinearity, weakly non-local non-
linearity in addition to perturbation terms is examined for the sake of uncovering quite important optical soliton
solutions. Dark, bright and singular solitons in addition to singular periodic solutions are yielded with the
modified simple equation technique and trial equation architecture along with parameter restrictions.

1. Introduction

We know from technological developments that the optical soliton
pulses form of the essential gradient for soliton communication tech-
nology. These pulses along optical waveguides are used in optical fi-
bers, data transmission, telecommunications industry and transconti-
nental distances over the globe in a few seconds. The dynamical
analysis of these pulses has increased the technology to the top level.
These developments have prompted more comprehensive researches
from the point of view of physical and engineering aspect. One of the
important investigations in this fields is to study the considered gov-
erning model with optical nonlinearities The most important one of the
governing models is the nonlinear Schrödinger equation (NLSE) which
models light waves in optical fibers. Over the past few decades, NLSE
has been intensely investigated in polarization preserving fibers, pho-
tonic crystal fibers, birefringent fibers and dense wavelength division
multiplexing (DWDM) system along with Kerr law and non-Kerr law
fiber nonlinearities [1–28]. In the open literature not only Kerr law
fiber nonlinearity but also a variety of non-Kerr law fiber nonlinearities
that are studied in various cases [1–27] such as power-law, quad-
ratic–cubic law, parabolic-law, dual-power law, log-law, anti-cubic law,
cubic-quintic-septic law, and triple-power law fiber nonlinearities [1].

We observe very recently -besides those nonlinearities- a new kind of
non-Kerr law fiber nonlinearity which is called weak non-local law fiber
nonlinearity [2–17]. From point of view of optics, nonlocality of non-
linearity means that the light-induced refractive index change of a
material at a particular position is defined by the light intensity in a
certain neighborhood of this position [12]. Nonlocality has an im-
portant impact on the propagation of beams and their localization. For
instance, nonlocality can raise modulational instability in self-defo-
cusing media, or suppress it in self-focusing media. Nonlocality may
also suppress transverse instability of optical waves and prevent the
catastrophic collapse of self-focusing beams in nonlinear media. Also,
the nonlocal nonlinearity impacts the interactions between bright so-
litons as observed in experiments with lead glasses and nematic liquid
crystal [12]. The nonlinear Schrödinger equations in Refs. [2–17]
comprise only the usual group-velocity dispersion (GVD) and the
parabolic law nonlinearity coupled with weakly non-local nonlinearity.
GVD is an important feature of a dispersive medium and is used often to
evaluate how the considered medium will impress an optical pulse
traveling through it. The parabolic law fiber nonlinearity occurs in the
nonlinear interaction between Langmuir waves and electrons. This
nonlinearity describes the nonlinear interaction between the high fre-
quency Langmuir waves and the ion-acoustic waves [18]. Unlike all of
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these studies in Refs. [2–17], the model will be studied from a different
perspective in this work. This work will consider the governing model
with the inclusion of the spatio-temporal dispersion term (STD), the
GVD, the inter-modal dispersion, the self-steepening, the higher-order
dispersions, the full nonlinearity and the parabolic law nonlinearity
coupled with weakly non-local nonlinearity. STD is a union of the
spatial dispersion and the temporal dispersion. The temporal dispersion
usually occurred in optics describes the memory effects in the con-
sidered model. On the other hand, spatial dispersion defines spreading
effects and is usually important only at small length scales and also
assists quite small perturbations to optics. Thus, the inclusion of the
STD term in the considered model prompts it into a generalized and
well-posed problem for better understanding the optics perspective. In
addition, in the model, the perturbation terms throughout the full
nonlinearity parameters are considered for giving a generalized view-
point. Because of these reasons, finding optical soliton pulses to the
model in polarization preserving optical fibers becomes very important.
To achieve this goal, the model is going to be investigated to obtain
optical soliton pulses with the help of modified simple equation
methodology [16,17] and trial equation approach [16,17,19,20]. These
two schemes will reveal dark soliton, bright soliton with singular so-
liton type solutions that will be presented throughout their presence
criterion. The details of the analysis are investigated in the progressive
segments of this study.

1.1. Governing model

Throughout parabolic law, weakly non-local nonlinearity spatio-
temporal dispersion term and perturbation terms, the governing model
called the perturbed nonlocal nonlinear Schrödinger’s equation
(NNLSE) will be employed as follows
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= + +

iq aq bq c q c q q c q q

i q q q q q

( | | | | ) (| | )

[ (| | ) (| | ) ].
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The first term on the left side of this model accounts for the temporal
evolution of pulses and also the presence of spatio-temporal dispersion
term and group velocity dispersion sequentially is provided by the
coefficient of b and a. The complex valued function q x t( , ) with the
inclusion of x t, independent variables stands for the wave profile. The
coefficients of c1 and c2 are called as the nonlinear terms which re-
spectively are refered to as cubic and quintic nonlinearities.
Additionally, the coefficient of c3 represents weakly non-local non-
linearity. The perturbation terms implies to self-steepening effect,
corresponds to the inter-modal dispersion and signifies the nonlinear
dispersion. Finally, the full nonlinearity is given as the exponent m.

2. A quick skim through trial equation approach

A quick glance over the trial equation methodology [20,21] is
yielded with a view to study quite important solitons.

Step-1: A nonlinear evolution equation can be given by

… =( , , , , , , ) 0t x tt xt xx (2)

with the dependent function and its partial derivatives shown as
…, , , , , ,t x tt xt xx and also this equation is decreased in

=F ( , , , , ) 0 (3)

by using of the conversion

=x t( , ) ( ) (4)

with

= x vt. (5)

The dependent function and its derivatives are given by
, , , , sequentially in the ordinary differential Eq. (3). The

parameter v corresponds to the velocity of the soliton while the in-
dependent variables xand t represent spatial and temporal variables
respectively.

Step-2: The ancillary equation which is the key point of the scheme
is yield as

= =
=

H( ) ( )
i

N

i
i2

0 (6)

having the essential constant coefficients ,0 1,…, N .
Step-3: The application of Eq. (6) is attached to the N number which

can be obtained with the aid of balancing rule in the ordinary differ-
ential Eq. (3).

Step-4: The overdeterminet equations are acquired with the aid of
putting Eq. (6) in Eq. (3) and setting of the constant coefficients of the
same functions namely = …i, 0, 1, 2,i to zero. Thus, the requisite
constants ,0 1, …, N can be given with the aid of solving the equa-
tions.

Step-5: The following equation can be reached as

± =

=

d( )

i

N

i
i

0

0 (7)

by using of Eq. (6). The solitons to Eq. (2) are acquired if the dis-
criminants of H ( )in (7) is classified [19,20].

2.1. Implementation to the governing model

With a view to study quite important optical solitons with the
governing model, the following transformation

=q x t P e( , ) ( ) i x t( , ) (8)

with

= x vt (9)

will be considered. The function P ( ) means the amplitude component
and the function x t( , ) signifies the phase component that can be
supposed by

= + +x t x t( , ) . (10)

The parameter means soliton frequency and the parameter stands
for soliton wave number whilst the parameter signifies soliton phase.

The imaginary part is recovered by

+ + + + =a b v b v m m P2 ((2 1) 2 ) 0m2 (11)

because of inserting Eq. (8) into Eq. (1). If we set the coefficients of the
linearly independent functions to zero in the imaginary component, we
can easily obtain the relationship between the self–steepening effect
and the nonlinear dispersion along with the full nonlinearity

+ + =m m(2 1) 2 0 (12)

while the velocity is located

= +v a b
b

2
1

. (13)

We would like to emphasize that it is possible to apply the modified
simple equation methodology and the trial equation approach without
taking into account the restrictions mentioned in Eqs. (12) and (13)
because Eq. (11) is not an ordinary differential equation. Moreover, the
methods can only be applied to ordinary differential equations where
the balancing rule is applied.

Also, if Eq. (8) is put in Eq. (1), the real part is acquired as

+ + + + + +
=+
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In the rest of the article, we will consider Eq. (14) which is an ordinary
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differential equations where the balancing rule is applied.
Case-1:
Eq. (6) can be yield by

= + + + +P P P P P( )2
0 1 2

2
3

3
4

4 (15)

because of =N 4 which can be obtained by using of balancing rule P P2

or P P( )2 between P5 throughout the full nonlinearity =m 1 in the or-
dinary differential Eq. (14).

The overdetermined equations are acquired as follows
P5 Coeff.:

+ =c c6 0,3 4 2 (16)

P4 Coeff.:

=c5 0,3 3 (17)

P3 Coeff.:

+ + =a bv c c2( ) 4 0,4 3 2 1 (18)

P2 Coeff.:

+ =a bv c3( ) 6 0,3 3 1 (19)

P Coeff.:

+ + + =a bv a b c( ) ( ) 2 0,2
2

3 0 (20)

P0 Coeff.:

=a bv( ) 01 (21)

because of putting Eq. (15) in Eq. (14) and setting of the constant
coefficients of the same functions to zero. The following results are
given by
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Through the medium of the following transformation

= ±P w(4 ) ,4
1
3 (23)

Eq. (15) can be transformed into the following integral
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+ +
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where

=b 4 (4 ) ,1 2 4
2
3
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1
3 (25)

According to Liu’s method of complete discrimination for polynomial
[19,20], we can solve the integral (24).

Type 1:
The solitons of the governing model are emerged as follows:
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The solution (26) points out bright soliton (see Figs. 1 and 2) provided
that
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The solution (28) points out singular soliton provided that
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Fig. 1. 3D plot of the bright soliton (26) setting all arbitrary parameters to unity
except = =b c2, 11 .

Fig. 2. Contour plot of q x t| ( , )|2 corresponding to the bright soliton (26) setting
all arbitrary parameters to unity except =b 2, =c 11 .
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The consequences (30) and (31) signify singular periodic solutions on
condition that

= > =b b b4 0, 0,1
2
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> < >w b , 0, 0.1 2 4 (32)

Type 2:
The solitons of the governing model are emerged as follows:
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The solution (33) points out dark soliton (see Figs. 3 and 4) provided
that
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The solution (35) points out singular soliton provided that
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The consequences (37) and (38) signify singular periodic solutions
provided that
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Case-2:
Eq. (14) can be yield by
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through the medium of the transformation =P V 1
2 . Eq. (6) can be yield

by
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because of =N 3 which can be obtained by using of balancing rule
V V( )2 or V V2 with V 4 throughout the full nonlinearity =m 1 in the
ordinary differential Eq. (40),

The overdeterminet equations are acquired as follows
V 4 Coeff.:

+ =c c6 4 0,3 3 2 (42)

V 3 Coeff.:

+ + =a bv c c2( ) 4 4 4 0,3 3 2 1 (43)
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=a bv( ) 00 (45)

because of putting Eq. (41) in Eq. (40) and setting of the constant
coefficients of the same functions to zero. The following results are
given by
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Fig. 3. 3D plot of the dark soliton (33) setting all arbitrary parameters to unity
except =b 2.

Fig. 4. Contour plot of q x t| ( , )|2 corresponding to the dark soliton (33) setting
all arbitrary parameters to unity except =b 2.
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Through the medium of the following transformation
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Eq. (41) can be transformed into the following integral
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According to Liu’s method of complete discrimination for polynomial
[19,20], we can solve the integral (48).

The solitons of the governing model are emerged as follows:
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The solution (50) points out bright soliton provided that
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The solution (52) points out singular soliton provided that
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The consequences (54) and (55) signify singular periodic solutions
provided that
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Case-3:
Eq. (6) can be yield by
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because of =N 4 which can be obtained by using of balancing rule P P2

or P P( )2 between P5 throughout the full nonlinearity =m 2 in the
ordinary differential Eq. (14).

The overdeterminet equations are acquired as follows

P5 Coeff.:

+ =c c6 0,3 4 2 (58)

P4 Coeff.:

=c5 0,3 3 (59)

P3 Coeff.:
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because of putting Eq. (57) in Eq. (14) and setting of the constant
coefficients of the same functions to zero. The following results are
given by
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Through the medium of the following transformation
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Eq. (57) can be transformed into the following integral
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According to Liu’s method of complete discrimination for polynomial
[19,20], we can solve the integral (66).

Type 1:
The solitons of the governing model are emerged as follows:
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The solution (68) points out bright soliton provided that

= > =b b b4 0, 0,1
2

0 0

> > <w b , 0, 0.1 2 4 (69)

= ± + × +

× + + +

q x t b v a bc v ac c c
c c

b v a bc v ac c c
c

x a b
b

t e

( , ) 3
2 ( )

csch 3
12

2
1

.i x t

2 2 1 3
3 2

2 2 1 3

3
2

( )
(70)

The solution (70) points out singular soliton provided that
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where Eqs. (72) and (73) mean singular periodic solutions whenever
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Type 2:
The solitons of the governing model are emerged as follows:
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The solution (75) points out dark soliton provided that
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The solution (77) points out singular soliton provided that

= = > < >b b w4 0, 0, 0, 01
2

0 2 4

= +b v a bc v ac c c
c c

( 3 )
96( )

.0
2 2 1 3

2

2 3
3 (78)

= ± + × +

× + + +

q x t b v a bc v ac c c
c c

b v a bc v ac c c
c

x a b
b

t e

( , ) 3
4 ( )

tan 3
24

2
1

,i x t

2 2 1 3
3 2

2 2 1 3

3
2

( )
(79)

= ± + × +

× + + +

q x t b v a bc v ac c c
c c

b v a bc v ac c c
c

x a b
b

t e

( , ) 3
4 ( )

cot 3
24

2
1

.i x t

2 2 1 3
3 2

2 2 1 3

3
2

( )
(80)

The consequences (79) and (80) signify singular periodic solutions
provided that

= = > > >b b w4 0, 0, 0, 01
2

0 2 4

= +b v a bc v ac c c
c c

( 3 )
96( )

.0
2 2 1 3

2

2 3
3 (81)

Case-4:
Eq. (6) can be yield by

= + + +V V V V( )2
0 1 2

2
3

3 (82)

because of =N 3 which can be obtained by using of balancing rule
V V( )2 or V V2 with V 4 throughout the full nonlinearity =m 2 in Eq.
(40).

The overdetermined equations are acquired as follows
V 4 Coeff.:

+ =c c6 4 4 0,3 3 2 (83)

V 3 Coeff.:

+ + =a bv c c2( ) 4 4 0,3 3 2 1 (84)

V 2 Coeff.:

+ + + =a bv a b c( ) 4( ) 2 0,2
2

3 1 (85)

V 0 Coeff.:

=a bv( ) 00 (86)

because of putting Eq. (82) in Eq. (40) and setting of the constant
coefficients of the same functions to zero. The following results are
given by

= + + + +

+
c

b v ab v ac b c v bc a abc v bc c

v c a c ac c c

1
6

( 2 12 12 2 3

12 3 12 ),

1
3
3

2 2 3
2 2 2 2 2 3

2 2 2 1 3

3
2 2 2 1 3 3

2

= + = =b v a bc v ac c c
c

c
c

3
3

, 0, 2( )
3

.2
2 2 1 3

3
2 0 3

2

3

(87)

Through the medium of the following transformation

= ±V w( ) ,3
1
3 (88)

Eq. (82) can be transformed into the following integral

± =
+ +
dw

w w d w d
( ) ( )

( )
3

1
3 0 2

2 1 (89)

where

=d ( ) ,2 2 3
2
3

=d ( ) .1 1 3
1
3 (90)

According to Liu’s method of complete discrimination for polynomial
[19,20], we can solve the integral (89).

The solitons of the governing model are emerged as follows:

= + × +

× + + +

q x t b v a bc v ac c c
c c

b v a bc v ac c c
c

x a b
b

t e

( , ) 3
2 ( )

sech 3
12

2
1

.i x t

2 2 1 3
3 2

2 2 2 1 3

3
2

1
2 ( )

(91)

The solution (91) points out bright soliton provided that

= > =d d d4 0, 0,2
2

1 1

> > <w d , 0, 0.2 2 3 (92)

= + × +

× + + +

q x t b v a bc v ac c c
c c

b v a bc v ac c c
c

x a b
b

t e

( , ) 3
2 ( )

csch 3
12

2
1

.i x t

2 2 1 3
3 2

2 2 2 1 3

3
2

1
2 ( )

(93)

The solution (93) points out singular soliton provided that

= > =d d d4 0, 0,2
2

1 1

> > >w d , 0, 0.2 2 3 (94)

= +q x t b v a bc v ac c c
c c

( , ) 3
2 ( )

2 2 1 3

3 2

× +

× + + +

b v a bc v ac c c
c

x a b
b

t e

sec 3
12

2
1

,i x t

2 2 2 1 3

3
2

1
2

( )

(95)
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= + × +

× + + +

q x t b v a bc v ac c c
c c

b v a bc v ac c c
c

x a b
b

t e

( , ) 3
2 ( )

csc 3
12

2
1

.i x t

2 2 1 3
3 2

2 2 2 1 3

3
2

1
2 ( )

(96)

The consequences (95) and (96) signify singular periodic solutions
provided that

= > =d d d4 0, 0,2
2

1 1

> < <w d , 0, 0.2 2 3 (97)

3. A quick skim through modified simple equation approach

A quick glance over the modified simple equation methodology [18]
is yield with a view to study quite important solitons.

Step-1: A nonlinear evolution equation can be given by

… =( , , , , , , ) 0t x tt xt xx (98)

with the dependent function and its partial derivatives shown as
…, , , , , ,t x tt xt xx and also this equation is decreased in

=F ( , , , , ) 0 (99)

by using of the conversion

=x t( , ) ( ) (100)

with

= x vt. (101)

The dependent function and its derivatives are given by
, , , , sequentially in the ordinary differential Eq. (99). The

parameter v corresponds to the velocity of the soliton while the in-
dependent variables xand t represent spatial and temporal variables
respectively.

Step-2: The ancillary equation which is the key point of the scheme
is yield as

=
=

P
P

( ) ( )
( )i

N

i

i

0 (102)

having the essential constant coefficients ,0 1,…, N .
Step-3: The application of Eq. (102) is attached to the N number

which can be obtained with the aid of balancing rule in the ordinary
differential Eq. (99).

Step-4: The overdeterminet equations are acquired with the aid of
putting Eq. (102) in Eq. (99) and setting of the constant coefficients of
the same functions namely P ( )i , = …i 1, 2, to zero. Thus, the explicit
solutions to Eq. (98) are acquired if the requisite constants ,0 1,…, N
can be given with the aid of solving the equations.

3.1. Implementation to the governing model

The application of the approach is yield in this section with a view
to study quite important solitons of the governing model.

Case-1:
Eq. (102) can be yield by

= +P ( ) ( )
( )0 1

(103)

because of =N 1 which can be obtained by using of balancing rule P
with P3 throughout =m 1 in the ordinary differential Eq. (14).

The overdeterminet equations are acquired as follows
5 coeff.:

+ =c c( ) ( 6 ) 0,1
3 5

2 1
2

3 (104)

4 coeff.:

+ =c c c5 ( ) (( 2 ) 2 ) 0,1
2 3

2 0 1
2

3 0 3 1 (105)
3 coeff.:

+ + +
+ + =

c c c bv a c
c c

((10 4 2 2 )( ) 16
2 2 ( ) ) 0,

1 2 0
2

1
2

1
2

1 1
2

3 0
2 2

3 0 1

3 1
2

3 1
2 2 (106)

2 coeff.:

+ + +
+ + =

c c c bv a
c c

((10 3 3 )( ) ( 6 3 3 )
4 2 ( ) ) 0,

1 2 0
3

1 0 1 1 0 1
2

3 0
2

3 0 1 3 0 1
2 (107)

1 coeff.:

+ +
+ + =

c a b c
c bv a

((5 3 3 )
(2 ) ) 0,

1 2 0
4

0
2 2

1 0
2

3 0
2 (108)

0 coeff.:

+ + =c a b c( ) 0.0 2 0
4

0
2 2

1 0
2 (109)

because of putting Eq. (103) in Eq. (14) and setting of the constant
coefficients of the same functions to zero. The following results can be
given by

= ± c
c

6 ,1
3

2

= ± +bvc c ac c c
c c

3 3
4

,0
2 3 2 1 3

2 3

= + +

+ + +
c c b

a c c b v c b vc c c abvc a c

c bvc c c c c c c a c ac c c c c

1
16 (1 )

( 16 2 3 2 2

2 16 6 2 3 )
2 3

2
2 2 3

2 2 2 2
2 2 3 2 2 3

2
2
2 2

3 1 2 3 2 3
2 1 3

2 2 2
2 1 2 3 1

2
3
2 (110)

and

= ± +bvc c ac c c
c

3 3
6

,2 3 2 1 3

3
2 (111)

= +bvc c ac c c
c

3 3
6

.2 3 2 1 3

3
2 (112)

The following equations can be reached as

= ±
+

×
± +c

bvc c ac c c
k e6

3 3
,

bvc c ac c c
c3

2

2 3 2 1 3
1

3 3
6

2 3 2 1 3

3
2

(113)

and

=
+

× +
± +c

bvc c ac c c
k e k6

3 3

bvc c ac c c
c3

2

2 3 2 1 3
1

3 3
6 2

2 3 2 1 3

3
2

(114)

with k1 and k2 integration constants by means of using Eqs. (111) and
(112). The solitons of the governing model are emerged as follows

= ± + ±

×

±

×

× +

×

+

± +

+

± +

+ +

q x t bvc c ac c c
c c

c
c

k e

k e k

e

( , ) 3 3
4

6

c
bvc c ac c c

bvc c ac c c
c

x vt

c
bvc c ac c c

bvc c ac c c
c

x vt

i x t

2 3 2 1 3
2 3

3
2

6 3
2

2 3 3 2 3 1 3

1

2 3 3 2 3 1 3
6 3

2 ( )

6 3
2

2 3 3 2 3 1 3

1

2 3 3 2 3 1 3
6 3

2 ( )
2

( )

(115)

on account of inserting Eqs. (113) and (114) into Eq. (103). If we set

= + × = ±
± +

k bvc c ac c c
c

e k3 3
6

, 1,
bvc c ac c c

c1
2 3 2 1 3

3
2

3 3
6 2

2 3 2 1 3

3
2 0

(116)

we get:
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= ± + × +

× + + + +

q x t bvc c ac c c
c c

bvc c ac c c
c

x a b
b

t e

( , ) 3 3
4

tanh 3 3
24

2
1

.i x t

2 3 2 1 3
2 3

2 3 2 1 3

3
2

0
( )

(117)

The solution (117) points out dark soliton (see Figs. 5 and 6) provided
that

+ >bvc c ac c c3 3 0.2 3 2 1 3 (118)

= ± + × +

× + + + +

q x t bvc c ac c c
c c

bvc c ac c c
c

x a b
b

t e

( , ) 3 3
4

coth 3 3
24

2
1

.i x t

2 3 2 1 3
2 3

2 3 2 1 3

3
2

0
( )

(119)

The solution (119) points out singular soliton provided that

+ >bvc c ac c c3 3 0.2 3 2 1 3 (120)

= ± + × +

× + + + +

q x t bvc c ac c c
c c

bvc c ac c c
c

x a b
b

t e

( , ) 3 3
4

tan 3 3
24

2
1

,i x t

2 3 2 1 3
2 3

2 3 2 1 3

3
2

0
( )

(121)

= ± + × +

× + + + +

q x t bvc c ac c c
c c

bvc c ac c c
c

x a b
b

t e

( , ) 3 3
4

cot 3 3
24

2
1

i x t

2 3 2 1 3
2 3

2 3 2 1 3

3
2

0
( )

(122)

where Eqs. (121) and (122) mean singular periodic solutions whenever

+ <bvc c ac c c3 3 0.2 3 2 1 3 (123)

Case-2:
Eq. (102) can be yield by

= + +V ( ) ( )
( )

( )
( )0 1 2

2

(124)

because of =N 2 which can be obtained by using of balancing rule V( )2

or VV with V 3 throughout the full nonlinearity =m 1 in the ordinary
differential Eq. (40).

The overdetermined equations are acquired as follows
8 coeff.:

+ =c c4 ( ) ( 6 ) 0,2
3 8

2 2 3 (125)
7 coeff.:

+ =c c c8 ( ) ((2 7 ) 5 ) 0,2
2 6

2 1 2 3 1 3 2 (126)

6 coeff.:

+ + + + +
+ + + =

c c bv c c c
a c c c

4 ( ) (( 4 6 2 12 10
2 )( ) 23 2 2 ( ) ) 0,

2
4

2
2

2 0 2
2

2 1
2

2 2 1 2
2

3 0 2 3

1
2

2
2

3 1 2 3 2
2

3 2
2 2

(127)
5 coeff.:

+ + + +
+ + +

+ + =

c c bv c c
c a bv c c

a c c

4( ) (( 3 12 4 3 3 16
2 3 )( ) (3 20 16

3 ) 5 4 ( ) ) 0,

3
1 2

2
2 0 1 2

2
2 1

3
2 1 2 1 1 2

2
3 0

1 2 3 1
3

1 2
2

2
2

3 0 2
2

3 1
2

2 2
2

3 1 2
2

3 1 2
2 2 (128)

4 coeff.:

+ +
+ + +

+
+ + + +
+
+ =

bv b c
a bv c c a
c c c c a
bv c c a

bv c c a
c c

( ) ((12 4 12 12 48
12 3 24 16 4 4
12 12 24 4 3 4 )

( ) ( 18 104 12 18 )
(4 16 16 4 )

( 16 8 )( ) ) 0,

2
0 2 2

2
0 2

2
1
2

2 2 0 1
2

2 0 2 1
2

3 0
2

2 3 0 1
2

2
2 2

2
2

0 2
2

1 1
2

2 1 2 0
2

2
2

2 1
4

1
2

2
2

2
1 2 3 0 1 2 3 1

3
1 2

2
2

3 0 2
2

3 1
2

2 2
2

3 0 2
2

3 1
2

2
2 (129)

3 coeff.:

+ +
+ +
+ + + +
+ + +

=

a b c c
bv c c c a

bv bv c c
a a bv c c

a c

2 ((4 4 12 2 24 8
2 4 12 2 4 2
4 )( ) ( 10 2 20 12
10 2 ) (3 12 2

3 ) 8 ( ) ) 0,

2
1 2 1 2 0 1 2 1

3
2 0

2
1 2 2 0

1
3

0 1 1 2 1 0 1 2 1 1
3

3 0
2

1 0

1 1 2
2

0 2 1
2

3 0
2

2 3 0

1
2

0 2 1
2

1 2 3 0 1 2 3

1
3

1 2 3 0 1 2
2 (130)

2 coeff.:

+ +
+ + + +

+
+ + + + +
+ + + + =

a a b b
c c c c

bv c a
bv bv c c a a
bv bv c a a

( 8 4 8 4 12 12
16 24 8 4 12 12
8 4 )( ) (6 12 6 )

( 4 2 8 8 4 2 )
( 4 8 4 )( ) 0,

2
0 2

2
1
2

0 2 1
2

0
2

2 0

1
2

2 0
3

2 2 0
2

1
2

0 2 1
2

1 0
2

2 1 0

1
2

0 2 1
2 2

0 1 3 0
2

1 0 1

0 2 1
2

3 0
2

2 3 0 1
2

0 2 1
2

0 2 1
2

3 0
2

2 0 2 1
2 2

(131)
1 coeff.:

+ + +
+ =

a b c c
bv c a

2 ((4 4 6 8 4 6 4 )
( 2 ) ) 0,

0 1
2

0 2 0
2

1 0

3 0 (132)

0 coeff.:

+ + + =a b c c4 ( ) 00
2 2

0 2 0
2

1 0 (133)

because of putting Eq. (124) in Eq. (40) and setting of the constant
coefficients of the same functions to zero. The following results are
given by

= ± + =

=

= + + +

+

bvc c ac c c
c

c
c

c b
a c b v c b vc abvc a c

bvc c c a c ac c

12( 3 3 ) , 0,

6 ,

1
12 (1 )

( 12 3 2 3 3

12 3 )

1
2 3 2 1 3

2
2 0

2
3

2

3
2

2
3
2 2 2

2 3 2 3

1 3 3
2 2

2 1 3 (134)

and

= ± +bvc c ac c c
c

3 3
3

,2 3 2 1 3

3
2 (135)

Fig. 5. 3D plot of the dark soliton (117) setting all arbitrary parameters to unity
except =b 2.
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= +bvc c ac c c
c

3 3
3

.2 3 2 1 3

3
2 (136)

The following equations can be reached as

= ±
+

×
± +c

bvc c ac c c
k e3

3 3
,

bvc c ac c c
c3

2

2 3 2 1 3
1

3 3
3

2 3 2 1 3

3
2

(137)

and

=
+

× +
± +c

bvc c ac c c
k e k3

3 3

bvc c ac c c
c3

2

2 3 2 1 3
1

3 3
3 2

2 3 2 1 3

3
2

(138)

with k1 and k2 integration constants by means of using Eqs. (135) and
(136). The solitons of the governing model are emerged as follows

= ± +q x t bvc c ac c c
c

( , ) 12( 3 3 )2 3 2 1 3

2
2

×

±

×

× +

+

±

+

±

+

+

k e

k e k

c
bvc c ac c c

x vt

c
bvc c ac c c

x vt

3
3 3

1
( )

3
3 3

1
( )

2

bvc c ac c c
c

bvc c ac c c
c

3
2

2 3 2 1 3

2 3 3 2 3 1 3
3 3

2

3
2

2 3 2 1 3

2 3 3 2 3 1 3
3 3

2

c
c

6 3

2

×

±

×

× +

+

±

+

±

+

+

k e

k e k

c
bvc c ac c c

x vt

c
bvc c ac c c

x vt

3
3 3

1
( )

3
3 3

1
( )

2

2
1
2

bvc c ac c c
c

bvc c ac c c
c

3
2

2 3 2 1 3

2 3 3 2 3 1 3
3 3

2

3
2

2 3 2 1 3

2 3 3 2 3 1 3
3 3

2

× + +ei x t( ) (139)

on account of inserting Eqs. (137) and (138) into Eq. (124). If we set

= + × = ±
± +

k bvc c ac c c
c

e k3 3
3

, 1,
bvc c ac c c

c1
2 3 2 1 3

3
2

3 3
3 2

2 3 2 1 3

3
2 0

(140)

we get:

= + × +

× + + × + +

q x t bvc c ac c c
c c

bvc c ac c c
c

x a b
b

t e

( , ) 3 3
2

sech 3 3
12

2
1

.i x t

2 3 2 1 3
2 3

2 2 3 2 1 3

3
2

0

1
2 ( )

(141)

The solution (141) points out bright soliton (see Figs. 7 and 8) provided
that

+ <bvc c ac c c3 3 0.2 3 2 1 3 (142)

= + × +

× + + × + +

q x t bvc c ac c c
c c

bvc c ac c c
c

x a b
b

t e

( , ) 3 3
2

csch 3 3
12

2
1

.i x t

2 3 2 1 3
2 3

2 2 3 2 1 3

3
2

0

1
2 ( )

(143)

The solution (143) points out singular soliton provided that

+ <bvc c ac c c3 3 0.2 3 2 1 3 (144)

= + × +

× + + × + +

q x t bvc c ac c c
c c

bvc c ac c c
c

x a b
b

t e

( , ) 3 3
2

sec 3 3
12

2
1

,i x t

2 3 2 1 3
2 3

2 2 3 2 1 3

3
2

0

1
2 ( )

(145)

= + × +

× + + × + +

q x t bvc c ac c c
c c

bvc c ac c c
c

x a b
b

t e

( , ) 3 3
2

csc 3 3
12

2
1

i x t

2 3 2 1 3
2 3

2 2 3 2 1 3

3
2

0

1
2 ( )

(146)

where Eqs. (145) and (146) mean singular periodic solutions whenever

+ >bvc c ac c c3 3 0.2 3 2 1 3 (147)

Case-3:
Eq. (102) can be yield by

= +P ( ) ( )
( )0 1

(148)

because of =N 1 which can be obtained by using of balancing rule P
with P3 throughout the full nonlinearity =m 2 in the ordinary differ-
ential Eq. (14).

The overdetermined equations are acquired as follows
5 coeff.:

=c c( ) ( 6 ) 0,1
3 5

1
2

2 1
2

3 (149)
4 coeff.:

+ =c c c5 ( ) (( 2 ) 2 ) 0,1
2 3

0 1
2

2 0 1
2

3 0 3 1 (150)
3 coeff.:

Fig. 6. Contour plot of q x t| ( , )|2 corresponding to the dark soliton (117) setting
all arbitrary parameters to unity except =b 2.
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+ + + +
+ + =

c c c bv a c
c c

(( 10 10 4 2 2 )( ) 16
2 2 ( ) ) 0,

1 0
2

1
2

2 0
2

1
2

1 1
2

3 0
2 2

3 0

1 3 1
2

3 1
2 2 (151)

2 coeff.:

+ +
=

c c c bv a
c c

((10 10 3 )( ) (6 3 3 )
4 2 ( ) ) 0,

1 0
3

1 2 0
3

1 1 0 1
2

3 0
2

3 0 1 3 0 1
2 (152)

1 coeff.:

+ + +
+ + =

c a b c
c bv a

((5 5 3 )
( 2 ) ) 0,

1 0
4

2 0
4 2

1 0
2

3 0
2 (153)

0 coeff.:

+ + + =c a b c( ) 00 0
4

2 0
4 2

1 0
2 (154)

because of putting Eq. (148) in Eq. (14) and setting of the constant
coefficients of the same functions to zero. The following results can be
given by

= ± +b v a bvc ac c c
c c

3
4 ( )

,0
2 2 1 3

3 2

= ± c
c

6 ,1
3

2

= +

+ + + +
+ +

+

c c b
b v ab v a c b v

c a ab vc a c c b v c b vc c
c a c abvc a c c bvc c c c
c a c ac c c c c

1
16( ) ( 1)

( 2 16 2

4 16 2 16
2 2 2 2 16

2 3 )

2 3
2

2 2 2 2 2 2 3
3
2 2 2

2
2 2 2

2
2

2 3
2 2 2

2
2

1 3
2

3
2 2

2 2
2

1 3 1 2 3 2

3
2 2

2
2

1 2 3 1
2

3
2

and

= ± +b v a bvc ac c c
c

3
6

,2 2 1 3

3
2 (155)

= +b v a bvc ac c c
c

3
6

.2 2 1 3

3
2 (156)

The following equations can be reached as

= ±
+

×
± +

c
b v a bvc ac c c

k e6
3

,
b v a bvc ac c c

c3
2

2 2 1 3
1

2 2 3 1 3
6 3

2

(157)

and

=
+

× +
± +

c
b v a bvc ac c c

k e k6
3

b v a bvc ac c c
c3

2

2 2 1 3
1

2 2 3 1 3
6 3

2
2 (158)

with k1 and k2 integration constants by means of using Eqs. (155) and
(156). The solitons of the governing model are emerged as follows

= ± + ±

×

±

×

× +

×

+

± +

+

± +

+ +

q x t b v a bvc ac c c
c c

c
c

k e

k e k

e

( , ) 3
4 ( )

6

c
b v a bvc ac c c

b v a bvc ac c c
c

x vt

c
b v a bvc ac c c

b v a bvc ac c c
c

x vt

i x t

2 2 1 3
3 2

3
2

6 3
2

2 2 3 1 3

1

2 2 3 1 3
6 3

2 ( )

6 3
2

2 2 3 1 3

1

2 2 3 1 3
6 3

2 ( )
2

( )

(159)

on account of inserting Eqs. (157) and (158) into Eq. (148). If we set

= + ×

= ±

± +

k b v a bvc ac c c
c

e

k

3
6

,

1,

b v a bvc ac c c
c1

2 2 1 3

3
2

3
6

2

2 2 1 3

3
2 0

(160)

we get:

= ± + × +

× + + + +

q x t b v a bvc ac c c
c c

b v a bvc ac c c
c

x a b
b

t e

( , ) 3
4 ( )

tanh 3
24

2
1

.i x t

2 2 1 3
3 2

2 2 1 3

3
2

0
( )

(161)

The solution (161) points out dark soliton provided that

+ <b v a bvc ac c c3 0.2 2 1 3 (162)

= ± + × +

× + + + +

q x t b v a bvc ac c c
c c

b v a bvc ac c c
c

x a b
b

t e

( , ) 3
4 ( )

coth 3
24

2
1

.i x t

2 2 1 3
3 2

2 2 1 3

3
2

0
( )

(163)

The solution (163) points out singular soliton provided that

Fig. 7. 3D plot of the bright soliton (141) setting all arbitrary parameters to
unity except =b 2, =c 11 .

Fig. 8. Contour plot of q x t| ( , )|2 corresponding to the bright soliton (141) set-
ting all arbitrary parameters to unity except = =b c2, 11 .
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+ <b v a bvc ac c c3 0.2 2 1 3 (164)

= ± + × +

× + + + +

q x t b v a bvc ac c c
c c

b v a bvc ac c c
c

x a b
b

t e

( , ) 3
4 ( )

tan 3
24

2
1

,i x t

2 2 1 3
3 2

2 2 1 3

3
2

0
( )

(165)

= ± + × +

× + + + +

q x t b v a bvc ac c c
c c

b v a bvc ac c c
c

x a b
b

t e

( , ) 3
4 ( )

cot 3
24

2
1

i x t

2 2 1 3
3 2

2 2 1 3

3
2

0
( )

(166)

where Eqs. (165) and (166) mean singular periodic solutions whenever

+ >b v a bvc ac c c3 0.2 2 1 3 (167)

Case-4:
Eq. (102) can be yield by

= + +V ( ) ( )
( )

( )
( )0 1 2

2

(168)

because of =N 2 which can be obtained by using of balancing rule V( )2

or VV with V 3 throughout the full nonlinearity =m 2 in the ordinary
differential Eq. (40).

The overdetermined equations are acquired as follows
8 coeff.:

=c c4 ( ) ( 6 ) 0,2
3 8

2 2 2 3 (169)

7 coeff.:

+ =c c c8 ( ) ((2 2 7 ) 5 ) 0,2
2 6

1 2 2 1 2 3 1 3 2 (170)

6 coeff.:

+ + +
+ + +

+ + =

c c bv c
c c a c
c c

4 ( ) (( 4 6 4 6 2
12 10 2 )( ) 23
2 2 ( ) ) 0,

2
4

0 2
2

1
2

2 2 0 2
2

2 1
2

2 2 1

2
2

3 0 2 3 1
2

2
2

3 1 2

3 2
2

3 2
2 2 (171)

5 coeff.:

+ + +
+ + + +

+ + =

c c bv c
c c a bv c

c a c c

4( ) (( 12 4 12 4 3 3
16 2 3 )( ) (3 20

16 3 ) 5 4 ( ) ) 0,

3
0 1 2

2
1
3

2 2 0 1 2
2

2 1
3

2 1 2 1

1 2
2

3 0 1 2 3 1
3

1 2
2

2
2

3 0

2
2

3 1
2

2 2
2

3 1 2
2

3 1 2
2 2

(172)

4 coeff.:

+ +
+ + +

+ +
+ + + +

+
+ =

bv b c
a bv c c a

c c c
c a bv c c a

bv c c a
c c

( ) ((48 12 4 48 24
12 3 24 16 4 4
12 12 24 4 4 4

3 )( ) ( 18 104 12 18 )
(4 16 16 4 )

( 16 8 )( ) ) 0,

2
0 1

2
2 0 2 2

2
0 1

2
2 2 0

2
2
2

0 2 1
2

3 0
2

2 3 0 1
2

2
2 2

2
2

1 0 2
2

1 1
2

2 0
2

2
2

2 1
4

2
2

1
4

2 1
2 2

1 2 3 0 1 2 3 1
3

1 2

2
2

3 0 2
2

3 1
2

2 2
2

3 0 2
2

3 1
2

2
2 (173)

3 coeff.:

+ +
+ +

+ + + +
+ + +

=

a b c c
bv c c c a

bv bv c c
a a bv c c a

c

2 ((24 8 4 4 24 8
2 4 12 2 4 2

4 )( ) ( 10 2 20 12
10 2 ) (3 12 2 3

) 8 ( ) ) 0,

0
2

1 2 0 1
3 2

1 2 1 2 2 0
2

1 2 2

0 1
3

0 1 1 2 1 0 1 2 1 1
3

3 0
2

1 0

1 1 2
2

0 2 1
2

3 0
2

2 3 0

1
2

0 2 1
2

1 2 3 0 1 2 3 1
3

1

2 3 0 1 2
2 (174)

2 coeff.:

+ + +
+ + +

+
+ + + + +
+ + + + =

a a b b
c c c c

bv c a
bv bv c c a a
bv bv c a a

( 16 24 8 4 8 4 16
24 8 4 12 12

8 4 )( ) (6 12 6 )
( 4 2 8 8 4 2 )
( 4 8 4 )( ) 0,

0
3

2 0
2

1
2 2

0 2
2

1
2

0 2 1
2

2 0
3

2 2 0
2

1
2

0 2 1
2

1 0
2

2 1 0

1
2

0 2 1
2 2

0 1 3 0
2

1 0 1

0 2 1
2

3 0
2

2 3 0 1
2

0 2 1
2

0 2 1
2

3 0
2

2 0 2 1
2 2

(175)

1 coeff.:

+ + +
+ =

a b c c
bv c a

2 ((8 4 4 8 4 6 4 )
( 2 ) ) 0,

0 1 0
2 2

2 0
2

1 0

3 0 (176)

0 coeff.:

+ + + =a b c c4 ( ) 00
2

0
2 2

2 0
2

1 0 (177)

because of putting Eq. (168) in Eq. (40) and setting of the constant
coefficients of the same functions to zero. The following results are
given by

= ± +b v a bvc ac c c
c

12( 3 )
( )

,1
2 2 1 3

2
2

= = c
c

0, 6 ,0 2
3

2

= + + +

+ +
c b

b v ab v a c b v c a abvc

bvc c c a c ac c

1
12 ( 1)

( 2 12 2

3 12 3 )
3
2

2 2 2
3
2 2 2 2 2 2

1 3 3
2 2 2 1 3 (178)

and

= ± +b v a bvc ac c c
c

3
3

,2 2 1 3

3
2 (179)

= +b v a bvc ac c c
c

3
3

.2 2 1 3

3
2 (180)

The following equations can be reached as

= ±
+

×
± +c

b v a bvc ac c c
k e3

3
,

b v a bvc ac c c
c3

2

2 2 1 3
1

3
3

2 2 1 3

3
2

(181)

and

=
+

× +
± +c

b v a bvc ac c c
k e k3

3

b v a bvc ac c c
c3

2

2 2 1 3
1

3
3 2

2 2 1 3

3
2

(182)

with k1 and k2 integration constants by means of using Eqs. (179) and
(180). The solitons of the governing model are emerged as follows

= ± +

×

±

×

× +

+

± +

+

± +

q x t b v a bvc ac c c
c

k e

k e k

( , ) 12( 3 )
( )

c
b v a bvc ac c c

b v a bvc ac c c
c

x vt

c
b v a bvc ac c c
b v a bvc ac c c

c
x vt

2 2 1 3
2 2

3 3
2

2 2 3 1 3

1

2 2 3 1 3
3 3

2 ( )

3 3
2

2 2 3 1 3

1

2 2 3 1 3
3 3

2 ( )
2
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+ ×

±

×

× +

×

+

±

+

±

+ +

+

+

c
c

k e

k e k

e6

c
b v a bvc ac c c

x vt

c
b v a bvc ac c c

x vt

i x t3

2

3
3

1
( )

3
3

1
( )

2

2
1
2

( )

b v a bvc ac c c
c

b v a bvc ac c c
c

3
2

2 2 1 3

2 2 3 1 3
3 3

2

3
2

2 2 1 3

2 2 3 1 3
3 3

2

(183)

on account of inserting Eqs. (181) and (182) into Eq. (168). If we set

= + ×

= ±

± +

k b v a bvc ac c c
c

e

k

3
3

,

1,

b v a bvc ac c c
c1

2 2 1 3

3
2

3
3

2

2 2 1 3

3
2 0

(184)

we get:

= +

× + × + +

× + +

q x t b v a bvc ac c c
c c

b v a bvc ac c c
c

x a b
b

t

e

( , ) 3
2 ( )

sech 3
12

2
1

.i x t

2 2 1 3
3 2

2 2 2 1 3

3
2 0

1
2

( ) (185)

The solution (185) points out bright soliton provided that

+ >b v a bvc ac c c3 0.2 2 1 3 (186)

= + × +

× + + × + +

q x t b v a bvc ac c c
c c

b v a bvc ac c c
c

x a b
b

t e

( , ) 3
2 ( )

csch 3
12

2
1

.i x t

2 2 1 3
3 2

2 2 2 1 3

3
2

0

1
2 ( )

(187)

The solution (187) points out singular soliton provided that

+ >b v a bvc ac c c3 0.2 2 1 3 (188)

= +

× + × + +

× + +

q x t b v a bvc ac c c
c c

b v a bvc ac c c
c

x a b
b

t

e

( , ) 3
2 ( )

sec 3
12

2
1

,i x t

2 2 1 3
3 2

2 2 2 1 3

3
2 0

1
2

( ) (189)

= +

× + × + +

× + +

q x t b v a bvc ac c c
c c

b v a bvc ac c c
c

x a b
b

t

e

( , ) 3
2 ( )

csc 3
12

2
1

i x t

2 2 1 3
3 2

2 2 2 1 3

3
2 0

1
2

( ) (190)

The consequences (189) and (190) signify singular periodic solutions
provided that

+ <b v a bvc ac c c3 0.2 2 1 3 (191)

4. Conclusions

The governing model with the inclusion of parabolic law non-
linearity, weakly non-local nonlinearity, spatio-temporal dispersion
term in addition to perturbation terms was examined for the sake of
uncovering quite important optical soliton solutions. Dark, bright and
singular solitons in addition to singular periodic solutions were yield
with the modified simple equation technique and trial equation archi-
tecture along with parameter restrictions. Some graphics have been
added to better understand the physical characteristics of the obtained
bright soliton and dark soliton that are quite well known as optical
soliton molecules or pulses in the literature. Comparing our work with
the results of [2–17], Eq. (1) has not been discussed before in literature
and thus our article is very novel study. The models in Refs. [2–17]
include only the usual group-velocity dispersion and the parabolic law
nonlinearity coupled with weakly non-local nonlinearity while this

article includes the spatio-temporal dispersion term, the usual group-
velocity dispersion, the inter-modal dispersion, the self-steepening for
short pulses, the higher-order dispersion, the full nonlinearity and the
parabolic law nonlinearity coupled with weakly non-local nonlinearity.
When compared the methods, the methods can only be applied to or-
dinary differential equations which have the principle of balancing.
Moreover, the methods cause optical dark, bright and singular soliton
solutions in addition to singular periodic solutions along with para-
meter restrictions. For the full nonlinearity =m 1 and =m 2, optical
bright, dark and singular soliton solutions are emerged from Eq. (14) by
using of the trial equation approach while the only optical dark and
singular soliton solutions are emerged from Eq. (14) by using of the
modified simple equation technique. Also, the only optical bright and
singular soliton solutions are emerged from Eq. (40) by the methods.
Consequently, the trial equation architecture offers more optical soliton
solution types than the modified simple equation technique by using of
Eq. (14). The consequences acquired in this paper causes to consider the
model as more elaborate. The solutions obtained by the two strategic
methods show that the model is an integrable equation. For this reason,
the model can be considered with weakly non-local nonlinearity tied to
non-Kerr type nonlinearities such as power-law, quadratic-cubic law,
dual-power law, log-law, anti-cubic law, cubic-quintic-septic law and
triple-power law fiber nonlinearities. Also, the model can be extended
to not only birefringent fibers with four-wave mixing (FWM) but also
dense wavelength division multiplexed (DWDM) system. Thus, these
new and strategic models in communication technology can be in-
tegrated by using of the two strategic methods and finally optical so-
liton solutions can be obtained by the two strategic methods. The de-
tails of this very valuable work mentioned in this section is going to be
presented respectively.
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