Chinese Journal of Physics 57 (2019) 72-77

Contents lists available at ScienceDirect

Chinese Journal of

Physics

Chinese Journal of Physics

journal homepage: www.elsevier.com/locate/cjph

Optical solitons in (2 + 1)-Dimensions with )
Kundu-Mukherjee-Naskar equation by extended trial function
scheme

Mehmet Ekici*?, Abdullah Sonmezoglu®, Anjan Biswas™“‘, Milivoj R. Belic®

@ Department of Mathematics, Faculty of Science and Arts, Yozgat Bozok University, 66100 Yozgat, Turkey

® Department of Physics, Chemistry and Mathematics, Alabama A&M University, Normal, AL 35762-7500, USA
€ Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia

4 Department of Mathematics and Statistics, Tshwane University of Technology, Pretoria 0008, South Africa

¢ Institute of Physics Belgrade, Pregrevica 118, 11080 Zemun, Serbia

ARTICLE INFO ABSTRACT

Keywords: This paper addresses Kundu-Mukherjee-Naskar equation by the aid of extended trial function
Solitons method to recover optical soliton solutions in (2+1)-dimensions. The integration algorithm
Kundu-Mukherjee-Naskar equation revealed doubly periodic functions. Upon taking the limiting values of the modulus of ellipticity,
Extended trial function scheme bright and singular solitons as well as singular periodic solutions emerge. Additional solutions
OCIS: such as plane waves also fall out of the scheme.
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1. Introduction

The dynamics of soliton propagation through optical fibers is typically studied in (1 + 1)-dimensions. In fact, there is a plethora of
mathematical models and plentiful mathematical techniques that are available to study these soliton dynamics in the context of
nonlinear optics and other areas of mathematical physics [1-25]. It was during 2014, a new model was proposed to address rogue
waves in deep sea by three elite physicists namely Kundu et al. [13]. In the same work, it was suggested that this model is applicable
to study soliton pulses in (2+1)-dimensions [12]. This paper therefore addresses the dynamics of two-dimensional soliton propa-
gation through an optical fiber with Kundu-Mukherjee-Naskar (KMN) model.

It must be noted that soliton dynamics has been studied in the past by a variety of authors using a wide range of powerful
mathematical techniques for a plethora of physical systems [1-6,16-25]. These studies are from nonlinear optics
[1,2,4-6,9,10,16,21,22,24,25], plasma physics [18], fluid dynamics [7,17,19], liquid crystals [8], theoretical physics [14], con-
densed matter physics [23] and many more. In particular, solitons in (24 1)-dimensions have been addressed in the past by several
authors, but notably during 2005 [16] and 2009 [21]. The integration scheme adopted in this paper is the extended trial function
method. It will reveal bright and singular optical solitons as well as several other solutions written in terms of Jacobi’s elliptic
function. In the limiting case of the modulus of ellipticity, these solutions converge to optical solitons. The details are explored in the
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rest of the paper.

1.1. Governing model

The dimensionless form of KMN equation is given by [12,13,17,20]
ig, + aq,, + ibq(qq} — g*q,) = 0. 6]

In Eq. (1), the spatial variables are x and y while t gives the temporal variable and the dependent variable is q(x, y, t) that represents
nonlinear wave envelope. The first term in (1) stands for temporal evolution of the wave followed by the dispersion term that is given
by the coefficient of a. Finally, the nonlinear term is the coefficient of b that is different from the conventional Kerr law nonlinearity
or any known non-Kerr law media. In (1), this nonlinear term accounts for “current-like” nonlinearity that stems from chirality. This
model was first proposed in 2014 to address oceanic rogue waves as well as hole waves. It was also proposed during 2013 that this
model can be applied to address optical wave propagation through coherently excited resonant waveguides that is doped with Erbium
atoms [5]. In particular, it was indicated that the model can study the phenomena of bending of light beams.

1.2. Mathematical analysis

In order to get started, the following hypothesis is selected:
qlx, y, 1) = P(£)ePrh, @
where P(¢) represents the amplitude portion and
&= Bix + By — t, 3
and the phase portion of the soliton is defined as
P(x, y,t) = 19X — Y + wt + 6. “4)

Here, k; and «, are the frequencies of the soliton in the x- and y-directions respectively while w is the wave number of the soliton and
finally 6 is the phase constant. Also, the parameters B; and B, in (3) represent the inverse width of the soliton along x— and
y-directions respectively, while v represents the velocity of the soliton. Inserting (2) along with (3) and (4) into (1) and decomposing
into real and imaginary parts, the following pair of equations, respectively yield

aB,B,P" — (w + axgia)P — 2big P> = 0, 5)

V= —a(K132 + KzBl). (6)

Although equation (5) will be handled by extended trial function approach in the subsequent section, it must be noted that this
equation was already handled by a variety of authors in the past and their research findings are reported all across the journal
spectrum [2,22,25].

2. Extended trial function method

This section will employ extended trial function technique [7-10,14,15] to construct soliton and other solutions to the KMN
equation. To initiate the extraction of solutions to (5), the following assumption for the soliton structure is established:

s
P=) 5%,

i=0 )
where

o(¥) 2 N /AL i o/
Y(¥) KPP+ ¥+ X, ' (8)

(¥) =0 =

Here, in (7) and (8), 7o, ..,T;; Mgs My and X, - X, are constants to be determined later. Integral form of Eq. (8) is given by

YW
sE-t)= [ W f\/q)gqj; . N
Balancing the orders of P and P* in (5) gives
o=p+ 2+ 2. (10)
Leto =4, p=0and¢=1in Eq. (10). Then, the adopted approach proposes the use of
P=1+17Y, an
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where 7y and 7; are all constants such that 7; = 0, and W satisfies Eq. (8). Putting (11) into (5), and solving the resulting system, the

following set of solutions is derived:

Mo =Hg» My =My My =My =T, G=T,
_ BB (2,70 — 140)
0 8biy 75 ’
_ a(uy — %)
28
= T (U0 — )
4 875 ’
_ M [2b73 (21,70 — 3py7) + At (2,70 — 4y 7))
2pyT0 — T

Inserting these results into (8) and (9) yields

dv
+€-§)=Q ,
t-g=af 5
where
Q= ’E’
\/ﬂ4
UMW) =94 + Koy + Koy + Hrg + Lal'
Hy My Hy Hy

Eventually the exact traveling wave solutions for the model (1) are recovered as below:
For O(¥) = (¥ — ¢)*,

qCe, y, )= 70 + G€e £ a0
o 0 ™= le + Bzy + a(Kle + KzBl)t - 50

2bt¢ (2u,70 — 3 + ar, (2u,T0 —
y exp[i{—xlx gy — (Kl[ 75 (21, To - 1, 7)) + are (2u,To #ﬂl)])[ + 6}]
MaTo — H1T

FOW) = —¢)(¥ —¢) and €5 > €,

40Q%(e; — &)
407 — [(a — )(Bix + By + a( B, + Bt — &)

q(x, y, )= {To + 56 +

2bt¢ (2u,70 — 3 + aro (2,70 —
prL{—mx—my—(h[ % Gttt — 1) ¥ 42y “mn)t+6}}

2u,To — Iy T

However, when O(¥) = (¥ — ¢)*(¥ — &)?,

a(e — &)

q(x, y, )= {7 + ne; +

exp[ G- (Bix + Byy + a(B; + 1Bt — §0)] -1
1 [2b1¢ (U, T — 3u,T) + ar (2u,To — 1T
x exp| il —rx — wy — [ o(llzo /ill) 2(#20 “11)]t+6 ’
2u,To — T
and
a(a — &)

gl y, )= 1%+ ma + p—
exp[f(le + Bzy + a(Kle + KzBl)t - EO):l -1

y exp[i {_le . (KI (267 (2,7 — 34,7) + ax (270 — ‘W])t . 6} }

2u,To — T
Whenever O(¥) = (¥ — ¢)?(¥ — &)(¥ — ;) and €; > €5 > €3,
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25(e — (e — &)

(& — &) — &)

qx,y, )= {70 + 1€ —

26— — &+ (&5 — ez)cosh[ (Bix + By + a(i4B; + KzBl)t)]

Q
2bt¢ (2u,70 — 3 + a6 (2,70 —
wexp| 1] o — oy — (Kl[ 7 (2T — 31,%) + a1 (24,7 Mlﬁ)])t+ ol |
2U,To — MG (20)
On the other hand, if (%) = (¥ — )(¥ — )(¥ — &)(¥ — ¢4) and €; > €5 > €3 > €4,
gy, = 7+ 56 + a(a — &) — )
JE — &)e —¢
s — 6+ (g — e@sn{i%(&x + Byy + a(igB; + 1Bt — &), m]
2btg (2p,70 — 3 + are (24,70 —
xexp| 1] -y — (Kl[ T (2,70 = 31,8) + a6 (2,70 lll‘ﬁ)])t Lol
2u,T0 — T (21
where modulus m is given as
m = (&2 — &)(e — €4)
(& —&)(e2 — €) (22)
It is important to highlight that ¢; for j = 1, ...,4 are the roots of
o) = 0. (23)
Let 7o = —7¢ and &, = 0. In this case, the solutions in Egs. (16)—(20) can be converted to plane wave solutions
7Q
X, ), )= 1%
q( Y ) { Bix + Bzy + a(Kle + KzBl)t}
2bt¢ (21,70 — 3 + a1 (21,79 —
xexp| 1] —rx -y — (Kl[ T (24570 = 31,8) + Al (2,7 Mlﬁ)])t Lol
2:“27:0 - MT (24)
450%(g; — €
FOPPSY S CES S
4% — [(&a — &)(Bix + Byy + a(a By + 10B1)1)]
wexp| i s -y — (Kl [2b75 (2,70 — 3u,7) + Ak (2,70 — ulfl)]) cvoll
2u,To — My T (25)
singular soliton solutions
q(x,y, t)= {@(1 F coth[%(&x + By + a(B; + szl)t)])}
2bt¢ (2u,70 — 3 + a6, (2u,70 —
wexp| 1] —rx -y — (Kl[ T (24,70 — 3p8) + are (24,70 ,ulfl)])t Lol
2:“270 - M4 (26)
and bright soliton solution
P
Q(x’ Vs t)=
R + cosh[S(Bix + B,y + a(1qB; + 16By)t)]
2bt¢ (2u,70 — 3 + arg (21,79 —
xexp| il xx — oy - (KI[ T (2,7 — 3p,1) + ar (2,7 ulﬁ)])t Lol
2u,To — T 27)
where
P = 25(a — )& — &)
&G —& ’ (28)
S = (& — &)(a — &)
Q ’ (29
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26 — € — &

R =
& — & (30)

Here the amplitude of the soliton is given by (28), while the inverse width of the soliton is given by (29). These solitons will exist for
71 < 0. Moreover, when 7, = —7¢, and &, = 0, Jacobi elliptic function solutions given by (21) are degraded to

P

, ¥, 1=
q(x, y, 1) W]

R + sn? [Sj(le + Byy + a(B; + 1.B))t),
(e —e3)(e2 — €4)

N exp[i {_le - (m [2b75 (24,70 — 3,7) + aro (2,70 — Mm)]) - 9”,

2:“270 - M (31)
where
P = a(e — &)(es — &)
€ — €4 ’ (32)
R, = €4 — €
' a—e (33)
(=1 (e — &5)(e2 — €4) .
S = for j=1,2.
! 20 o (34)
Remark-1: When the modulus m — 1, singular optical soliton solutions take place
P
q(x, y, )= > :
Ry + tanh?[S;j(B1x + B,y + a (B, + 1,B))t) ]
2bt¢ (2p,T0 — 3 + ar, (2u,T0 —
wexp| i) -y — (Kl[ T (2,70 — 3p%) + a6 (24,70 ,ul‘[l)])t Lol
2/"27:0 - MT (35)
for &3 = ¢4.
Remark-2: However, if m — 0, Eq. (31) degenerates to periodic singular solutions
P
X, ¥, )= p
q( Y ) {ﬂl + Slnz[Sj(le + Bzy + a(Kle + KzBl)t)]}
2bt3 (24,70 — 3 + ar (2u,T0 —
wexp| i s -y — (Kl[ 7 (2T — 3¢,%) + a6 (24,70 /"171)])[ vol|
2U,To — T (36)

for e, = e.

3. Conclusion

This paper secured bright and singular optical soliton solutions to KMN equation that is proposed to govern soliton dynamics in
(24 1)-dimensions along excited resonant waveguides that is doped with Erbium atoms. The extended trial function method was
adopted to obtain these soliton solutions as well as other solutions that are written in terms of Jacobi’s elliptic function method. The
listed solutions are being reported for the first time. It must be noted that the stability of the solutions have not been addressed in the
paper. One of the future activities will involve studying the model using numerical algorithms and analyzing the stability of the
solutions.

Being a newly proposed model, there is a lot of scope to broaden the horizon in this context. The extended trial function scheme
being a nontrivial approach, additional integration methodologies are to be applied, in future, to secure further new solutions to KMN
equation. These include Lie symmetry analysis, mapping methods, trial solution approach, Kudryashov’s scheme and several others.
These results will be surely and sequentially available but is currently awaited.
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